OBJECT ORIENTED PROGRAMMING

Objectives
®* To teach the student the concepts of object oriented and procedure programming

* To differentiate between functions, classes and objects

® To learn to overload functions and operators

® To design applications using dynamic memory management techniques

* Toteach the student to implement generic programming and exception handling

Unit |

Introduction to Object Oriented Programming: Object oriented paradigm-Differences between
Object Oriented Programming and Procedure oriented programming, Basic concepts of Object
Oriented Programming, Encapsulation, Inheritance and Polymorphism, Benefits of OOP, Structure of
a C++ program, namespace, Data types, C++ tokens, Identifiers, Variables, Constants, Operators,
Control structures & Loops.

Unit-ll

Functions, Classes and Objects:

Introduction of Classes, Class Definition, Defining a Members,Objects,Access Control, Class Scope,
Scope Resolution Operator, Inline functions, Memory Allocation for Objects, Static Data Members,
Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friend Functions.

Unit-llI

Constructors, Destructors, Inheritance:

Introduction to Constructors, Default Constructors, Parameterized Constructors, Copy Constructors,
Multiple Constructors in a Class, Destructors. Inheritance :

Introduction to inheritance, Defining Derived Classes, Single Inheritance, Multiple Inheritance, Multi
level Inheritance, Hierarchical Inheritance, Hybrid Inheritance.

Unit-IV

Pointers, Virtual Functions and Polymorphism:

Introduction to Memory management, new operator and delete operator, Pointers to objects,
Pointers to Derived Classes, Polymorphism, Compile time polymorphism, Run time polymorphism,
Virtual Functions, Overloading- Function Overloading, Operator overloading.

Unit-V

Templates and Exception handling:

Introduction to Templates, Class Templates, Class Templates with Multiple Parameters, Function
Templates, Function Templates with Multiple Parameters.

Exception handling:
Basics of Exception Handling, Types of exceptions, Exception Handing Mechanism, Throwing and
Catching Mechanism, Rethrowing an Exception, Specifying Exceptions.

Outcomes:
® To differentiate object oriented programming and procedural programming.

® To construct classes, functions and objects
® Toimplement the constructors, destructors and inheritance

® To develop programs using dynamic memory management techniques To
e apply exception handling and generic programming.

UNIT -1

Concepts of Object Oriented programming: Object oriented paradigm-differences between
Object Oriented Programming and Procedure oriented programming, Basic concepts of Object
Oriented Programming,Encapsulation, Inheritance and Polymorphism. Benefits of OOP .Structure of
a C++ program, namespace, Data types, C++ tokens, identifiers, variables, constants, operators,
control structures & loops.

Overview of C language:

1.C language is known as structure oriented language or procedure oriented language

2.Employs top-down programming approach where a problem is viewed as a sequence of tasks to
be performed.

3.All program code of ¢ can be executed in C++ but converse many not be possible

4. Function overloading and operator overloading are not possible.

5. Local variables can be declared only at the beginning of the block.

6. Program controls are through jumps and calls to subroutines.

7.Polymorphism, encapsulation and inheritance are not possible.

For solving the problems, the problem is divided into a number of modules. Each module is a subprogram.
8. Data abstraction property is not supported by procedure oriented language.

9. Data in procedure oriented language is open and can be accessed by any function.

Overview of C++ language:

1. C++ can be considered as an incremental version of ¢ language which consists all programming
language constructs with newly added features of object oriented programming.

2. c++ is structure(procedure) oriented and object oriented programming language.

3. The file extension of C++ program is “.CPP”

4. Function overloading and operator overloading are possible.

5. Variables can be declared in inline i.e when required 6. In c++ more emphasis is give on data rather

than procedures

Polymorphism, encapsulation and inheritance are possible.

. Data abstraction property is supported by c++.

9. Data access is limited. It can be accessed by providing various visibility modes both for data and
member functions. there by providing data security by data hiding

10.Dymanic binding is supported by C++

11..1t supports all features of ¢ language

12.1t can be called as an incremental version of ¢ language

o ~

Difference Between Procedure Oriented Programming (POP) & Object Oriented Programming (OOP)

Procedure Oriented Programming Object Oriented Programming
program is divided into small parts
1 [called functions. program is divided into parts called objects.
Importance is not given to data but to Importance is given to the data rather than
o [functions as well as sequence of actions procedures or functions because it works as
to be done. a real world.

3 follows Top Down approach. OOP follows Bottom Up approach.

OOP has access specifiers named Public,

Programming are : C, VB, FORTRAN,
Pascal.

4 It does not have any access specifier. Private, Protected, etc.
Data can move freely from objects can move and communicate with
5 function to function in the system. each other through member functions.
6 To add new data and function in POP is not | OOP provides an easy way to add new data and
SO easy. function.
Most function uses Global data for sharing | In OOP, data can not move easily from
7 that can be accessed freely from function to | function to function,it can be kept public or
function in the system. private so we can control the access of data.
8 It does not have any proper way for hiding | OOP provides Data Hiding so provides more
data so it is less secure. security.
In OOP, overloading is possible in the form of
9 Overloading is not possible. Function Overloading and Operator
Overloading.
Example of Procedure Oriented
10 Example of Object Oriented Programming are :

C++, JAVA, VB.NET, C#NET.

Principles(or features) of object oriented programming:

1.

SARE N

6.

Encapsulation
Data abstraction
Polymorphism
Inheritance
Dynamic binding
Message passing

Encapsulation: Wrapping of data and functions together as a single unit is known as encapsulation. By
default data is not accessible to outside world and they are only accessible through the functions which are
wrapped in a class. prevention of data direct access by the program is called data hiding or information

hiding

Data abstraction :

Abstraction refers to the act of representing essential features without including the
back ground details or explanation. Classes use the concept of abstraction and are defined as a list of
attributes such as size, weight, cost and functions to operate on these attributes. They encapsulate all essential
properties of the object that are to be created. The attributes are called as data members as they hold data
and the functions which operate on these data are called as member functions.

Class use the concept of data abstraction so they are called abstract data type (ADT)

9 ¢

Polymorphism: Polymorphism comes from the Greek words “poly” and “morphism”. “poly” means many
and “morphism” means form i.e.. many forms. Polymorphism means the ability to take more than one form.
For example, an operation have different behavior in different instances. The behavior depends
upon the type of the data used in the operation.
Different ways to achieving polymorphism in C++ program:
1) Function overloading 2) Operator overloading
#include<iostream>
using namespace
std; int main() {int
a=4; a=a<<2;

cout<<a="<<a<<endl,
return 0;

¥

Inheritance: Inheritance is the process by which one object can acquire the properties of another.

Inheritance is the most promising concept of OOP, which helps realize the goal of constructing software
from reusable parts, rather than hand coding every system from scratch. Inheritance not only supports reuse
across systems, but also directly facilitates extensibility within a system. Inheritance coupled with
polymorphism and dynamic binding minimizes the amount of existing code to be modified while enhancing
a system.

When the class child, inherits the class parent, the class child is referred to as derived class (sub class)
and the class parent as a base class (super class). In this case, the class child has two parts: a derived part
and an incremental part. The derived part is inherited from the class parent. The incremental part is the new
code written specifically for the class child.

Dynamic binding:

Binding refers to linking of procedure call to the code to be executed in response to the call. Dynamic
binding(or late binding) means the code associated with a given procedure call in not known until the time
of call at run time.

Message passin g:
An object oriented program consists of set of object that communicate with each other. Objects
communicates with each other by sending and receiving information .
A message for an object is a request for execution of a procedure and there fore invoke
the function that is called for an object and generates result

Benefits of object oriented programming (OOPs)

> Reusability: In OOP* s programs functions and modules that are written by a user can be reused by

other users without any modification.
> Inheritance: Through this we can eliminate redundant code and extend the use of existing classes.

Data Hiding: The programmer can hide the data and functions in a class from other classes. It helps the programmer to

build the secure programs.
>
Reduced complexity of a problem: The given problem can be viewed as a collection of different objects. Each object is
responsible for a specific task. The problem is solved by interfacing the objects. This technique reduces the complexity of
the program design.

>

Easy to Maintain and Upgrade: OOP makes it easy to maintain and modify existing code as new objects

can be created with small differences to existing ones. Software complexity can be easily managed.
Message Passing: The technique of message communication between objects makes the interface with external systems

easier.

>
Modifiability: it is easy to make minor changes in the data representation or the procedures in an
OO program. Changes inside a class do not affect any other part of a program, since the only

public interface that the external world has to a class is through the use of methods.

BASIC STRUCTURE OF C++ LANGUAGE : The program written in C++ language follows this basic
structure. The sequence of sections should be as they are in the basic structure. A C program should have
one or more sections but the sequence of sections is to be followed.
1. Documentation section
2. Linking section
3. Definition section
4. Global declaration section & class declarations
5.Member function definition
6. Main function section
main()
{
Declaration section
Executable section

¥

1. DOCUMENTATION SECTION : comes first and is used to document the
use of logic or reasons in your program. It can be used to write the program's objective,
developer and logic details. The documentation is done in C language with /* and */ .
Whatever is written between these two are called

comments.

2. LINKING SECTION : This section tells the compiler to link the certain
occurrences of keywords or functions in your program to the header files specified
in this section. e.g. #include<iostream>

using namespace std;

directive causes the preprocessor to add the contents of the iostream file to the program. It contains declarations

for cout and cin.

>
cout is a predefined object that represents the standard output stream. The operator << is an

insertion operator, causes the string in double quotes to be displayed on the screen.

screen

A

COUt ‘—@: “C++”
Object

Insertion Operator variable

The statement cin>>n; is an input statement and causes the program to wait for the user to type in a number.
The number keyed is placed on the variable “n”. The identifier cin is a predefined object in C++ that
corresponds to the standard input stream. The operator >> is known as extraction operator. It extracts the
value from the keyboard and assigns it to the value variable on its right.

Object Extraction operator variable

cin >® . 455
— \ —

Keyboard

3. DEFINITION SECTION : It is used to declare some constants and assign them some value.

e.g. #define MAX 25
Here #define is a compiler directive which tells the compiler whenever MAX is found in
the program replace it with 25.

4. GLOBAL DECLARATION SECTION : Here the variables and class definations which are used
through out the program (including main and other functions) are declared so as to make them global(i.e
accessible to all parts of program). A CLASS is a collection of data and functions that act or manipulate
the data. The data components of a class are called data members and function components of a class are

called member functions

A class ca also termed as a blue print or prototype that defines the variable or functions common to
all objects of certain kind. It is a user defined data type

e.g.
int i; //this declaration is done outside and before main()

5. SUB PROGRAM OR FUNCTION SECTION : This has all the sub programs or the functions
which our program needs.
void display()
{ cout<<’C++ is better that
7
¥
SIMPLE ,,C++* PROGRAM:
#include<iostream> using
namespace std; void
display()
{ cout<<”’C++ is better that C”;

}int
main()

{ display()
return O;
}

6. MAIN FUNCTION SECTION : It tells the compiler where to start the execution
from main()
{ point from execution starts
} main function has two

sections

1. declaration section : In this the variables and their data types are declared.

2. Executable section or instruction section : This has the part of program which actually performs
the task we need.

namespace:
namespace is used to define a scope that could hold global identifiers.
ex:-namespace scope for c++ standard library.
A classes ,functions and templates are declared within the namespace named
std using namespace std;-->directive can be used.

user defined name space:
syntax for defining name space is

namespace namespace_name
{

//declarations of variables.functions,classes etc...
}ex:

#include<iostream>

using namespace std; namespace

sample
{" int m; void display(int
n)
{ cout<<"in namespace
N="<<n<<endl;
}
}
using namespace sample;
int main() {
int a=5; m=100;
display(200);

cout<<"M in sample name space:"<<sample::m; return

0;}

#include<iostream>

This directive causes the preprocessor to add content of iostream file to the program.
some old versions of C++ used iostream.h .if complier does not support ANSI
(american nation standard institute) C++ then use header file iostream.h

DATA TYPES:
A data type is used to indicate the type of data value stored in a variable. All C compilers support a
variety of data types. This variety of data types allows the programmer to select the type appropriate to
the needs of the application as well as the machine. ANSI C supports the following classes of data
types: 1.Primary (fundamental) data types.

2.Derived data types.
3.User-defined data types C++ data types l

Array
Pointer
Reference

Structure
Union

| Class _
enumeration

void

1041

Primary data types:
l.integer data type
2.character data type
3.float point data type
4.Boolean data type
5.void data type

integer data type:-

This data type is used to store whole numbers. These numbers do not contain the decimal part. The size of the integer
depends upon the world length of a machine (16-bit or 32-bit). On a 16-bit machine, the range of integer values is -
32,768 to +32,767.integer variables are declared by keyword int. C provides control over range of integer values and
storage space occupied by these values through the data types: short int, int, long int in both signed and unsigned
forms.

Signed integers: (16-bit machine):
A signed integer uses 1 bit for sign and 15 bits for the magnitude of the number

A signed integer uses 1 bit for sign and 15 bits for the magnitude of the number.

(2" to +2"5-1).

Ex: signed int x=100;

0 0 0 0 |0 |00 0 0 1 1 0 0 1 0 0
Signed bit Magnitude

MSB(most significant bit)

100(10) 00000000001100100¢2)

Representation of negative number :

-100(10)=1111111110011100(2)

1514 13 12 11 10Y ¥ | 6 O
1 1 {1 1 [T 1 1 1]1 100

S1%2 +1%2 +1%2 +1%2 +1%2 +1%2 +1*2 +1*2
+1*2 +
6

| L

Z J. U 1514
110 10 | ..

5 4 3 2 1 0

0*2 +0*%2 +1*2 +1*2 +1*2 +0*2 +0*2
= -32768+16384+8192+4096+2048+1024+512+256+128+0+0+26+8+4+0+0 =-
100(10)

NOTE: Signed bit (MSB BIT): 0 represents positive integer, 1 represents negative numbers

Unsigned integers: Unsigned integers use all 16 bits to store the magnitude. Stores numbers does not have any
sign & Size qualifier and range of integer data type on a 16-bit and machine are shown in the table:

MEMORY REQUIRED
RANGE
OR STORAGE SIZE IN BYTES FORMAT
DATATYPE [TURBOC | GCC/COMPILERS| TURBOC GCC SPECIER
(16 BIT) IN LINUX | (16 BIT)
(32BIT) (32 BIT)
short int 32768 32768
or 2 2 To To %hd
153276715 32767
15 15

signed short int (-2 to+2 -1) (-2 to+2 -1)
short int
0 to 65535 0 to 65535
or 2 2 (Oto+2 -1) (Oto+2 -1) %hu
signed short int
signed int -32768 -2,147,843,648 %d
or 2 4 To to or
153276715 2,147,843,647
(-2 to+2 -1) 3131
int (-2 to+2 -1) %i
unsigned int 0 to 65535 0t0 4,294,967,295
16 32
2 4 (Oto+2 -1) (0to2 -1) %u
long int -2,147,843,648 -2,147,843,648
or to to
signed long int 2,147,843,647 2,147,843,647 .
31 31 31 31 %ld
4 4 (-2 to+2 -1) (-2 to+2 -1)
unsigned long int 0to 4,294,967,295 0to 4,294,967,295
32 32
4 4 (0to2 -1) (0to2 -1) %Iu
long long int -9223372036854775808
or
signed long long Not 8 | e To %Ld
int supported 9223372036854775807
63 63
(-2 to+2 -1)

Character data type: (char)

A single character can be defined as a character data type. Character data type occupies one byte of
memory for storage of character. The qualifiers signed or unsigned can be applied on char data
type. char is the key word used for declaring variables size and range of character data type on 16
bit or 32 bit machine can be shown below

Data type

MEMORY REQUIRED
OR STORAGE SIZE (in bytes)

RANGE

FORMAT SPECIER

char or signed char

128t0127(-2 Tto

_1)

7 -
2
%cC

Unsigned signed char

010256 (O to 2 -1)

%cC

Floating Point Types:

Floating point number represents a real number with 6 digits precision occupies 4 bytes of memory.
Floating point variables are declared by the keyword float.

Double floating point data type occupies 8 bytes of memory giving 14 digits of precision. These
are also known as double precision numbers. Variables are declared by keyword double 1ong
double refersto a floating point data type that is often more precise than double precision.

Size and range of floating point data type is shown in the table:

Data type Size (memory) Range format specifier
(key word)
Float 32 bits (4 bytes) 3.4E-38 to 3.4E+38 %f
Double 64 bits (8 bytes) 1.7E-308 to 1.7E +308 Yolf
long double 80 bits (10 bytes) 3.4E-4932 to 1.1E+4932 AR
Boolean data type:-

Boolean or logical data type is a data type, having two values (usually denoted true and false), intended
to represent the truth values of logic and Boolean algebra. It is named after George Boole, who first
defined an algebraic system of logic in the mid 19th century. The Boolean data type is the primary result
of conditional statements, which allow different actions and change control flow depending on whether a
programmer -specified Boolean condition evaluates to true or false.

C99 added a Boolean (true/false) type which is defined in the <stdbool.h>
header Boolean variable is defined by kkey word bool; Ex:

bool b;
where b is a variable which can store true(1) of false (0)

Void type
The void type has no values. This is usually used to specify the return type of functions. The type of the function
said to be void when it does not return any value to the calling function. This is also used for declaring general
purpose pointer called void pointer.

Derived data types.
Derived datatypes are Arrays , pointer and references are examples for derived data types. User-
defined data types:

they The data types defined by the user are known as the user-defined data types.
They are structure,union,class and enumeration

C++ Tokens

IDENTIFIERS: Identifiers are the names given to various program elements such as variables, functions
and arrays. These are user defined names consisting of sequence of letters and digits.
Rules for declaring identifiers:

» .
The first character must be an alphabet or underscore.
> It must consist of only letters, digits and underscore.
” |dentifiers may have any length but only first 31 characters are significant. > It must not contain white

space or blank space.
» We should not use keywords as

identifiers. > Upper and lower case letters
are different.

Example: ab Ab aB AB are treated differently Examples of valid
identifiers: a, x, n, num, SUM, fact, grand_total, sum_of_digits, sum1

Examples of Invalid identifiers: $amount, *num’, grand-total, sum of digits, 4num.
$amount : Special character is not permitted grand-total :
hyphen is not permitted. sum of digits : blank spaces between
the words are not allowed.
4num : should not start with a number (first character must be a letter or underscore

Note: Some compilers of C recognize only the first 8 characters only; because of this they are unable
to distinguish identifiers with the words of length more than eight characters.

Variables: A named memory location is called variable.
OR
It is an identifier used to store the value of particular data type in the memory.
Since variable name is identifier we use following rules which are same as of identifier
Rules for declaring Variables names:
> The first character must be an alphabet or underscore.
It must consist of only letters, digits and underscore.
Identifiers may have any length but only first 31 characters are significant.

It must not contain white space or blank space.

YV V YV VY

We should not use keywords as identifiers.

> Upper and lower case letters are different. > Variable names must be unique in the given scope

Ex:int a,b,a;//is in valid
Int a,b;//is valid

Variable declaration: The declaration of variable gives the name for memory location and its size
and specifies the range of value that can be stored in that location.

Syntax:

Data type variable name;

EX: a 2000 10
int a=10;
float x=2.3; x | 2.300000 |5000

KEYWORDS :

There are certain words, called keywords (reserved words) that have a predefined meaning in
,,C++" language. These keywords are only to be used for their intended purpose and not as identifiers. The
following table shows the standard ,,C++* keywords

auto break case char const continue
default do double else enum extern
float for goto if int long
register return short signed sizeof static
struct switch typedef union unsigned void
volatile while class friend new delete
this public private protected inline try
throw catch template

CONSTANTS:

Constants refer to values that do not change during the execution of a program.
Constants can be divided into two major categories:
1.Primary constants:
a)Numeric constants

» Integer constants.
» Floating-point (real)
constants. b)Character constants
> Single character constants > String
constants 2.Secondary constants:
> :
Enumeration constants.

> Symbolic constants.

> Avrrays, unions, etc.
Rules for declaring constants:
1.Commas and blank spaces are not permitted within the constant.
2.The constant can be preceded by minus (-) signed if required.
3.The value of a constant must be within its minimum bounds of its specified data type.
Integer constants: An integer constant is an integer-valued number. It consists of sequence
of digits. Integer constants can be written in three different number systems:
1.Decimal integer (base 10).
2.0ctal integer (base 8).
3.Hexadecimal (base 16).

Decimal integer constant: It consists of set of digits, 0 to 9.
Valid declaration: 0, 124, -56, + 67, 4567 etc.
Invalid declaration: $245, 2.34, 34 345, 075. 23,345,00.
it is also an invalid declaration.
Note: Embedded spaces, commas, characters, special symbols are not allowed between digits

>

They can be preceded by an optional + or + sign.

Octal integer : It consists of set of digits, 0 to 7.
Ex: 037, 0, 0765, 05557 etc. (valid representation) It
is a sequence of digits preceded by 0.
Ex: Invalid representations
0394: digit 9 is not permitted (digits 0 to 7 only)
235: does not begin with 0. (Leading number must be 0).

Hexadecimal integer: It consists of set of digits, 0 to 9 and alphabets A, B, C, D, E, and
F. Hexadecimal integer is a sequence of digits preceded by Ox or 0X. We can also use a
through f instead of A to F.
Ex: 0X2, 0x9F, 0Xbcd, 0x0, 0x1. (Valid representations) EX:
Invalid representations: Oaf, Oxb3g, 0Xgh.

Oaf: does not begin with Ox or 0X.

0xb3g, 0Xgh: illegal characters like g, h. (only a to f are allowed)

The magnitude (maximum value) of an integer constant can range from zero to
some maximum value that varies from one computer to another.

Typical maximum values for most personal computers are: (16-bit machines)
Decimal integer constant: 32767 (215-1)

Octal integer constant: 077777

Hexadecimal integer constant: 0X7FFF
Note: The largest value that can be stored is machine dependent.

Floating point constants or Real constants : The numbers with fractional parts are called real
constants. These are the numbers with base-10 which contains either a decimal part or exponent (or
both). Representation: These numbers can be represented in either decimal notation or exponent
notation (scientific notation).
Decimal notation: 1234.56, 75.098, 0.0002, -0.00674 (valid notations)
Exponent or scientific notation:
General form: Mantissa e exponent
Mantissa: It is a real number expressed in decimal notation or an integer notation.
Exponent: It is an integer number with an optional plus (+) or minus (-) sign.
E or e: The letter separating the mantissa and decimal part. EX:

(Valid notations)
3

1.23456E+3 (1.23456x10)
1

7.5098 e+1 (7.5098x10)
-4

2E-4 (2x10)
These exponential notations are useful for representing numbers that are either very large or very small.
Ex: 0.00000000987 is equivalent to 9.87e-9

Character constants:-
Single ¢ haracter constants: It is character(or any symbol or digit) enclosed within single quotes.
EX: ”a A\Y ”1\\ ,’*\\

Every Character constants have integer values known as ASCI1 values

ASCII:- ASCII stands for American Standard Code for Information Interchange. Pronounced ask-ee, ASCII is a code
for representing English characters as numbers, with each letter assigned a number from 0 to 255.Computers can only
understand numbers, so an ASCII code is the numerical representation of a character such as ‘a’ or '@’ or an action of
some sort.A SCII codes represent text in computers, communications equipment, and other devices that use text. Most

modern character-encoding schemes are based on ASCII, though they support many additional characters.
Below is the ASCII character table and this includes descriptions of the first 32 non -printing characters.
String constants or string literal:

String constant isa sequence of zero or more characters enclosed by double quotes.
Example:

“MRCET” “12345” “*)(&%”
Escape Sequences or Backslash Character Constants
C language supports some nonprintable characters, as well as backslash (\') which can be expressed
as escape sequences. An escape sequence always starts with backslash followed by one or more
special characters.
For example, a new line character is represented "\n" or endl
These are used in formatting output screen, i.e. escape sequence are used in
output functions. Some escape sequences are given below:

operator meaning
+ add
- subtract

* multiplication

Escape sequence Character OPERATORS

A4? audible alert AND
EXPRESSIONS

‘b’ back space

ar form feed

“\n’ new line

“Ar’ horizontal tab

A vertical tab

b single quote

i double quote

e question mark

AV Backslash

“\o’ Null

An operator is a symbol which represents a particular operation that can be performed on
data. An operand is the object on which an operation is performed.

By combining the operators and operands we form an expression. An expression is a sequence
of operands and operators that reduces to a single value.

C operators can be classified as
1. Arithmetic operators
. Relational operators
. Logical operators
. Assignment operators
. Increment or Decrement operators
. Conditional operator
. Bit wise operators
. unary operator
. Special operators
10.Additional operators in c++

O 00O ~NO Ol WDN

1. ARITHMETIC OPERATORS : All basic arithmetic operators are present in C.

/ division

% modulo division(remainder)

An arithmetic operation involving only real operands(or integer operands) is called real arithmetic(or
integer arithmetic). If a combination of arithmetic and real is called mixed mode arithmetic.
/*C program on Integer Arithmetic Expressions*/

#include<iostraem.h>
void main()

{ int

a, b;

cout<"Enter any two
integers"; cin>>a>>b;
cout<<"a+b"<< a+b;
cout<<"a-b"<< a-b;
cout<<"a*bh"<< a*b;
cout<<"a/b"<< a/b;

cout<<"a%b"<< a%b;

¥

OUTPUT:
a+b=23 a-b=17
a*b=60

a/b=6 a%

b=2

2. RELATIONAL OPERATORS : We often compare two quantities and depending on their
relation take certain decisions for that comparison we use relational operators.

operator meaning

< is less than

> is greater than

<= is less than or equal to
>= is greater than or equal to
== is equal to is

I= not equal to

/* C program on relational operators*/
#include<iostream.h> void
main()

{int

a,b;

clrscr();

cout<<"Enter a, b values:";
cin>>a>>h; cout<<"a>b"<<
a>b; cout<<"a>=b"<<
a>=h; cout<<"a<b"<< a<b;
cout<<"a<=b"<< a<=b;
cout<<"a==p"<< a==b;
cout<<"al=b"<< al=b; }
OUTPUT:

Enter a, b values: 59

a>b: 0 //false a<b: 1

[ltrue a>=a: 1 //true

a<=b: 1 //true
a==b: 0 //false
al= b: 1 /ltrue

3.LOGICAL OPERATORS:

Logical Data: A piece of data is called logical if it conveys the idea of true or false. In C++ we use int data type to
represent logical data. If the data value is zero, it is considered as false. If it is non -zero (1 or any integer other than 0) it
is considered as true. C++ has three logical operators for combining logical values and creating new logical values:

Truth tables for AND (&&) and OR (||) operators: X Y [X&&Y (XY Note:Below
. A 0 [0 |O 0 program works
T'ruth table i()’r .\()'l (') operator: 0 1 0 1 in compiler

3 'IX T o lo 1 that support

1 0 0 1 1 1 C99 standards

#include<iostream.h> #include<stdbool.h>
int main()
{ bool
a,b;
[*logical and*/ a=0;b=0;
cout<<" a&&b "<< a&&b<<endl;
a=0;b=1;
Cout<<" a&&b "<< a&&b<<endl;
a=1;b=0; cout<<" a&&b "<<
a&&b<<endl; a=1;b=1;
cout<<" a&&hb "<< a&&b<<endl;
[*logical or*/ a=0;b=0;
cout<<" a||b "<< ajlb<<endl;
a=0;b=1,;
cout<<" g||b "<< a|lb<<endl;
a=1;b=0;
cout<<" ag||b "<< a|lb<<endl;
a=1;b=1;
cout<<" a||b "<< ajlb<<endl;
[*logical not*/ a=0;
cout<<" a||b "<< a|lb<<endl; a=1;
cout<<" g||b "<< a|lb<<endl;
return 0;

}

OUTPUT:

0 &&0=0
0&&1=0
1&&0=0
1&&1=1
010=0
o|l1=1

1]0=1
1)1=1
10 =1
11 =0

4.ASSIGNMENT OPERATOR:
The assignment expression evaluates the operand on the right side of the operator (=) and places
its value in the variable on the left.
Note: The left operand in an assignment expression must be a single variable. There
are two forms of assignment:

*Simple assignment
*Compound assignment

Simple assignment :
In algebraic expressions we found these expressions.
Ex: a=5; a=a+1; a=b+1;
Here, the left side operand must be a variable but not a constant. The left side variable
must be able to receive a value of the expression. If the left operand cannot receive a
value and we assign one to it, we get a compile error.

Compound Assignment:
A compound assignment is a shorthand notation for a simple assignment. It requires that the
left operand be repeated as a part of the right expression. Syntax: variable operator+=value

Ex:
A+=1; itis equivalent to A=A+1,

Advantages of using shorthand assignment operator:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.
2. The statement is more concise and easier to read.

3. The statement is more efficient.

Some of the commonly used shorthand assignment operators are shown in the following
table:

Statement with simple assignment operator | Statement with shorthand operator
a=atl a+=1

a=a-1 a-=1

a=a*| a*=|

a=a/l a/=1

a=a%] a%=

a=a*(n+1) a*=n+|

5.INCREMENT (++) AND DECREMENT (--) OPERATORS:
The operator ++ adds one to its operand where as the operator - - subtracts one from its operand. These operators are
unary operators and take the following form:

Operator | Description
Both the increment and decrement operators may either +=a Pre-increment
precede or follow the operand. a++ Post-increment
Postfix Increment/Decrement :(a++/a--) =a Pre-decrement
In postfix increment (Decrement) the value is incremented a-- Post-decrement

(decremented) by one. Thus the a++ has the same effect as

a=a+l1; a --has the same effect as a=a-1.
The difference between a++ and a+1 is, if ++ is after the operand, the increment takes place after the
expression is evaluated.

The operand in a postfix expression must be a variable.
Ex1:int
a=5;
B=a++; Here the value of B is 5. the value of a is 6.
Ex2:
int x=4; y=x--; Here the value of y is 4, x value is 3
Prefix Increment/Decrement (++a/ --a)
In prefix increment (decrement) the effect takes place before the expression that contains
the operator is evaluated. It is the reverse of the postfix operation. ++a has the same effect
as a=a+l.
-- a has the same effect as a=a-1.
Ex: int b=4; A=
++b;
In this case the value of b would be 5 and A would be 5.
The effects of both postfix and prefix increment is the same: the variable is incremented by 1.
But they behave differently when they used in expressions as shown above. The execution of
these operators is fast when compared to the equivalent assignment statement.

#include<iostream.h>
int main()

{int

a=1;

int b=5; ++a;
cout<<"a="<<a<<endl;
__b;
cout<<"p="<<b<<endl;
cout<<"a="<<a++<<endl;
cout<<"a="<<a<<endl; cout<<"b="<<b--<<endl;
cout<<"b="<<bh<<endl;
return 0; } a=2 b=4 a=2
a=3 b=4 b=3
6.CONDITIONAL OPERATOR OR TERNARY OPERATOR:

A ternary operator requires two operands to operate

Syntax: - True
I
#include<iostream.h> void main() expression 1?7 expression2: expression3
{inta, b,c; cout<<"Enter a and b values:"; [?
cin>>a>>b; False
c=a>b?a:b;

cout<<"largest of a and b is "<<c;

¥

Enter a and b values:1 5
largest ofaand b is 5

7. BIT WISE OPERATORS : C supports special operators known as bit wise operators for
manipulation of data at bit level. They are not applied to float or double.

operator meaning

& Bitwise AND
A Bitwise exclusive OR
<< left shift
>> right shift

~ one's complement

Bitwise AND operator (&)

The bitwise AND operator is a binary operator it requires two integral operands (character or integer). It does a
bitwise comparison as shown below:

First Operand Bit Second Operand Bit | Opel & Ope2
0 0 0
0 1 0
1 0 0
1 1 1

Bitwise OR operator (|)

The bitwise OR operator is a binary operator it requires two integral operands (character or
integer). It does a bitwise comparison as shown below:

First Operand Bit

Second Operand Bit

Opel | Ope2

0

0

0

0
1
1

1
0
1

1
|
l

Bitwise EXCLUSIVE OR operator (*)

The bitwise EXCLUSIVE OR operator is a binary operator it requires two integral operands
(character or integer). It does a bitwise comparison as shown below:

First Operand Bit Second Operand Bit | Opel » Ope2
0 0 0
0 1 |
1 0 |
1 1 0

Shift Operators
The shift operators move bits to the right or the left. These are of two types:
*Bitwise shift right operator
. *Bitwise shift left operator
Bitwise shift right operator
It is a binary operator it requires two integral operands. The first operand is the value to be shifted and the second
operand specifies the number of bits to be shifted. When bits are shifted to right,the bits at the right most end are
deleted and a zero is inserted at the MSB bit.
#include<iostream.h>
void main()

{int
X,shift;
cout<<”Enter a number:”); cin>>x;
cout<<’enter now many times to right shift: *;
cin>>shift;
cout<<’Before Right
Shift:”<<x; x=x>>shift; cout<<’After
right shift:"<<x; }
Run1l:
Enter a number:8
enter now many times to right shift:1
Before Right Shift:8
After right shift:4

Explanation: The number entered through the keyboard as input is 8 and its corresponding
binary number is 1000,
Lo [0 fo o [o Jo Jo fo o fofoJoft Jo fo fo |
IS5 4131211 10 9 87 6 5 43 2 1 0
After execution of the program the input data x is to be shifted by 2 bits right side. The
answer in binary form would be as follows:

[0 [0 [o o Jo Jo Jo foJoJofofoJo Jo J1 [0 |
15 4131211 10 9 87 6543 2 1 0

The right shift operator divides the given number by a power of 2. If we shift a binary
number two places to the right, we are dividing the given number by 4 (2°).

Bitwise shift left operator

It is a binary operator it requires two integral operands. The first operand is the value to be
shifted and the second operand specifies the number of bits to be shifted left.

When bits are shifting left, the bits at the left most end are deleted.

Ex: int a=2;
a<<=3;

Shift left is the opposite of shift right operator. The left shift operator multiplies the given
number by a power of 2. If we shift a binary number three places to the left, we are
multiplying the given number by 8 (2°).

One's complement or Bitwise NOT

The bitwise NOT, or complement, is a unary operation that performs logical negation on each
bit, forming the ones' complement of the given binary value. Digits which were 0 become 1,
and vice versa.

Ex: NOT 0111 (decimal 7) = 1000 (decimal B)

In C, t he bitwise NOT operator is "~" (tilde).

Truth table: Expression value | ~ Expression
0 1
| (non-zero) 0

Note: One’s complement (Bitwise NOT) operator is different form Logical NOT operator.

We use this operator in encoding and decoding process.
8.SPECIAL OPERATORS
These operators which do not fit in any of the above classification are ,(comma), sizeof, Pointer
operators(& and *) and member selection operators (. and ->). The comma operator is used to link related
expressions together.

The SIZEOF operator:

It returns the number of bytes occupied by the operand. The operand may be a variable, a
constant (data value) or a data type qualifier.

Ex:inta,c, f, d:

c=sizeof(a);//here c=2,the sizeof operator returns the size of the variable a which is of int type

f=sizeof{long double); //f value is 10 which is the size of the long double qualifier type
d=sizeof(23.345); //d value is 4 which is the size of the float constant value

The sizeof operator is normally used to determine the length of arrays and structures. It is
also used to allocate space dynamically to the variable s during execution of a program.

The Comma Operator (,)

The comma operator can be used to link the related express
of expressions is evaluated left to right and the value of the
of the combined expression.

Ex: a=(x=10, y=20, x+y);
First assigns the value 10 to x, then assigns 20 to y and fing
It has the lowest precedence among all the operators.

We use comma operator in loop statements and declaratic
of same type.

Operator Description
. + Unary plus

9.UNARY OPERATOR: operator which operates - § e
on single operand is called unary operator) P——

-- Decrement

& Address

~ Ones complement

Sizeof Size of operator

Type Type casting

Operators in c++: All above operators of ¢ language are also valid in c++.New operators introduced
in c++ are

Sno Operator Symbol
1. Scope resolution operator .
2. Pointer to a member declarator el
3. Pointer to member operator -S>* >
4. Pointer to member operator *
5. new Memory allocating operator
6. delete Memory release operator
7. endl Line feed operator
8. setw Field width operator
9. insertion <<
10. |Extraction >>

1 .Scope Resolution operator:
Scope:-Visibility or availability of a variable in a program is called as scope. There are two types of scope.
i)Local scope ii)Global scope
Local scope: visibility of a variable is local to the function in which it is
declared. Global scope: visibility of a variable to all functions of a program
Scope resolution operator in “::” .
This is used to access global variables if same variables are declared as
local and global PROGRAML.2:- #include<iostream.h> int a=5; void
main()
{ int a=10; cout<<Local
a="<<a<<endl;
cout<<’Global a="<<::a<<endl;
by
Expected output:
Local a=10
Global a=5
Member Dereferencing operator: -
1. |Pointer to a member declarator x
2. |Pointer to member operator ->* >
3. | Pointer to member operator *
Pointer to a member declarator ::*
This operator is used for declaring a pointer to the member

of the class #include<iostream.h> class sample
{public: int x; };
int main()
{ sample s; /lobject
int sample ::*p;//pointer decleration
S.*p=10; /lcorrect
cout<<s.*p;
}
Output:10

2 .Pointer to member operator ~ ->*
#include<iostream.h>
class sample
{ public:
int X;
void display()
{
cout<<"x="<<x<<endl;
}
};int
main()
{
sample s; /lobject
sample *ptr;

int
sample::*f=&sample::x;
$.x=10; ptr=&s; cout<<ptr-
>*f:
ptr->display();
}
3. Pointer to member operator
* #include<iostream.h> class
sample
{ public: int x;
};int
main()
{ sample s; /lobject
int sample ::*p;//pointer decleration s.*p=10;
/[correct
cout<<s.*p;

Manipulators:

Manipulators are the operators used to format the data that is to be displayed on screen. The most commonly used
manipulators are endl and setw

endl:-it is used in output statement and inserts a line feed. It is similar to new line character (“\n”) ex:

cout<<’a=2"<<endl;

cout<’name=sunil”’<<endl;

Output: a=2 name=sunil setw:- this manipulator allows a specified width for a field that

is to be printed on screen

and by default the value printed is right justified. This function is available in header file iomanip.h

#include<iostream.h>
#include<iomanip.h>

using namespace std,;

int main()

{

int s=123;
cout<<"s="<<setw(10)<<s ;

}

output

s= 123

Insertion (<<) and Extraction (>>)
operators: the operators are use with output and input
objects ex:
cout<<’Enter n”;
cin>>n

Control statements:-The flow of execution of statements in a program is called as control. Control statement
is a statement which controls flow of execution of the program. Control statements are classified

into following categories.

1.Sequential control statements

(type) expression;

3 .Unconditional control statements Or

1.Sequential control statements:- type (expression); Sequential control
statements ensures that the statements) instructions(or
are executed in the same they appear in order in which
the program. i.e. By executes the default system in
statements in the program order. sequential

2.Conditional control statements

2.Conditional control statements
:Statements that are executed when a
condition is true. These statements are divided
into three categories. they are

1.Decision making statements

2.Switch case control statement or

3.Loop control statements or repetations
1.Decision making statements:- These statements are used to control the flow of execution of a program
by making a decision depending on a condition, hence they are named as decision making statements.
Decision making statements are of four types

1.Simple if

2.if else

3.nested if else

4.1f else ladder

1.Simple if statement: if the test expression is true then if statement executes statements that
immediately follow if

Syntax:
If(test expression)

Test s . False

{ _ Expression
List of statements;
True
'
}
Body of if
[*largest of two numbers*/ = L
#include<stdio.h> int main() l
{ int a,b; cout<<“Enter any two integers:”; cin>>a>>b; if(a>b)

cout<<“A is larger than B\n A="<<a;
if(b>a) cout<<“B is larger than A\n
A="<<b; return 0;
}
2. if —else statement:
If test expression is true block of statements following if are executed and if test expression is
false then statements in else block are executed

if (test expression) l

{ statement block1,;

}else Test - False

{ statement block2; “~__ Expression

[*largest of two numbers*/ b i v]
] . Body of if Body of else

#include<iostream.h> int main() l B

{inta,b; ‘

cout<<”Enter any two integers:”; cin>>a>>b;
v

if(a>b)

cout<<“A is larger than B\n A="<<a;

else cout<<“B is larger than A\n A="<<b;

return O;

}

3.Nesting of if-else statements It's also possible to nest one if statement inside another. When a series of decisions are
to be made.

If —else statement placed inside another if else statement

Syntax:
If(test expression) {If(test
expression) {
/Istatements
}else
{ //statements

}

} else
{If(test expression) {
/Istatements

}

else
{ //statements

}
}
[*largest of three numbers*/
#include<iostream.h>
#include<conio.h> int
main()
{int
a,b,c;
cout<<"Enter a,b,c values:";
cin>>a>>h>>c;

Test
Expression

lrrue

Body of if

-

False

\J

Body of else

Testexpression

Test
Expression

f’fllf!
Body of if

-
'3

{ cout<<"A ia largest among three numbers\n™;

{ cout<<"C ia largest among three numbers\n";

if(a>b)
{ if(a>c)
cout"A="<<aq;
} else
cout<<"c="<<¢;
}
}
else
{if(b>c)

{ cout<<"B ia largest among three numbers\n";

cout<<"B="<<b;

} else

{ cout<<"C ia largest among three numbers\n";

cout<<"c="<<c;

¥

getch(); return
0;

}

4.if else ladder

if(conditionl)
statement1;
else if(condition2)
statement 2;

:

False

\J

Body of else

else if(condition3)
statement n;

else default statement.

statement-x;

The nesting of if-else depends upon the conditions with which we have to deal.

The condition is evaluated from top to bottom.if a condition is true the statement associated with it is executed.

When all the conditions become false then final else part containing default statements will be executed.

#include<iostream.h>
void main()

{int

per;

cout<<"Enter percentage”; cin>>per; if(per>=80) cout<<’Secured

Distinction”<<endl; else if(per>=60)
cout<<’Secured First
Division”<<endl, else if(per>=50)
cout<<”Secured Second Division”<<endl; else
if(per>=40)
cout<<”’Secured Third
Division”<<endl; else cout<<’Fail”’<<endl

}

THE SWITCH STATEMENT or

MULTIWAY SELECTION :

In addition to two-way selection, most
programming languages provide another selection
known as multiway

selection. Multiway selection chooses among several alternatives. C has two different ways to implement

édition‘l
?

‘Jnm e

7 »
condition_2
?
Block statement_1 !

ilrue

Block statement_2

condition_n
?

Jrue | default statement

1
Block statement_ n‘

multiway selection: the switch statement and else-if construct

If for suppose we have more than one valid choices to choose from then we can use

switch statement in place of if statements.
{

case value-1: block-1
break;

case value-2:
block-2
break;

-------- default:

default block;

switch(expression)

concept

switch
(conditional expression)

statement block executed
if condition 1 is —P>
true(satisfied).

case
condition 1

statement block executed

case

25 if condition 2 is —
condition 2 true(satisfied).
l false
case true statement block executed
e g if condition 'n is —p
condition 'n true(satisfied).
statement block executed default
if no condition is
true (satisfied).

[*program to simulate a simple calculator */
#include<iostream.h>

int main() { float a,b;

char opr;

cout<<"Enter numberl operator number2 : ";
cin>>a>>oper>>h; switch(opr)
{
case '+
cout<<"Sum : "<<(a + b)<<endl;
break;
case - cout<<"Difference : "<<(a -b)<<endl; break;
case '*'": cout<<’Product : "<<a * b<<endl; break;
case '/": cout<<’Quotient :"<<(a / b)<<endl; break;
default: cout<<”Invalid Operation!"<<end];
} return
0;
}

Loop control statements or repetitions:
A block or group of statements executed repeatedly until some condition is satisfied is called Loop.
The group of statements enclosed within curly brace is called block or compound statement.
We have two types of looping structures.
One in which condition is tested before entering the statement block called entry control.

The other in which condition is checked at exit called exit controlled loop.
Loop statements can be divided into three categories as given below
1.while loop statement

2.do while loop statement

3.for loop statement

1L.WHILE STATEMENT :

While(test condition)

{
) body of the loop Entrs
Itis an entry controlled loop. The condition is evaluated and if ———»
it is true then body of loop is executed. After execution of body the .Y
condition is once again evaluated and if is true body is executed once Test False
again. This goes on until test condition becomes false. <_ Condition]
¢ program to find sum of n natural numbers */ frue
#include<iostream.h> int main() { "**jf'Tij =
inti=1,sum = 0,n; cout<<"Enter N"<<end; cin>>n; Body of The loop |
while(i<=n) Following Statement
{ sum =sum +] '
=i+l
}

cout<<’Sum of first”’<<n<’natural numbers

is:”<<sum<<endl; return O;

¥
2.DO WHILE STATEMENT :

The while loop does not allow body to be
executed if test condition is false. The do while is an
exit controlled loop and its body is executed at least
once.

do
{ body
Jwhile(test condition);

/*c program to find sum of n natural numbers */
#include<stdio.h>
int main() {
int 1 = 1,sum = 0,n; cout<<’Enter
N"<<endl; cin>>n

do{

do-while — (Exit controlled)

sum =sum + i; i

=i+1;

} while(i<=n);

cout<<”Sum of first”<< n<<” natural numbers
18:”’<<sum; return O;

¥

Note: if test condition is false. before the loop is being executed then While loop executes zero number of
times where as do--while executes one time

3.FOR LOOP : It is also an entry control loop that provides a more concise structure

Syntax:

for(initialization; test expression; increment/decrement)
{ statements;

}
For statement is divided into three expressions each is
separated by semi colon; for - Statement
1 .initilization expression is used to initialize variables o
2.test expression is responsible of continuing the loop. If ' : «
it is true, then the program control flow goes inside the : I
loop and executes the block of statements associated with
it .If test expression is false loop terminates
3.increment/decrement expression consists of increment
or decrement operator This process continues until test
condition satisfies.

/*c program to find sum of n natural numbers */
#include<stdio.h>

int main()

{

int i ,sum = 0,n; cout<<’Enter
N"; cin>>n;

for(i=1;i<=n;i++)
{ sum =sum + i;

}

cout<<“Sum of first”<<n<<” natural numbers
18:%d”’<<sum; return 0;

Nested loops:Writing one loop control statement within another loop control statement is called nested loop
statement

{ Inner | Outer
.............. loop | loop
.}
}. i
Ex:
for(i=1;i<=10;i++) for(j=1;j<=10;j++)
cout<<i<<j;

[*program to print prime numbers upto a given number*/
#include<stdio.h>
#include<conio.h> void
main()
{ int n,i,fact,j;
clrscr();
cout<<"enter the number:";
cin>>n for(i=1;i<=n;i++)
{fact=0;
/ITHIS LOOP WILL CHECK A NO TO BE PRIME NO. OR
NOT. for(j=1;j<=i;j++)
{ if(i%j==0)
fact++,

}
if(fact==2)

cout<<i<<’\t”;

} getch(
);
}

Output:
Enter the number : 5
235

Unconditional control statements:

Statements that transfers control from on part of the program to another part unconditionally
Different unconditional statements are

1)goto

2)break

3)continue

1.90t0 .- goto statement is used for unconditional branching or transfer of the program execution to the
labeled statement.

The goto statement to branch unconditionally from one point to another in the program. The
goto requires a label in order to identify the place where the branch is to be made. A label is
any valid variable name, and must be followed by colon (;). The label is placed immediately
before the statement where the control is to be transferred. The general form of goto is shown
below:

label:
statement;

goto label;

goto label;

statement;

Forward Jump Backward Jump
The label: can be anywhere in the program either before or after the goto label; statement.

If the label: is placed after the goto label;, some statements will be skipped and jump is
known as a Forward Jump.

If the label: is placed before the goto label; a loop will be formed some statements will be
executed repeatedly. Such a jump is known as a Backward Jump.

/*c program to find sum of n natural numbers */
#include<stdio.h>
int main() {
inti,sum=20,n;
cout<<’Enter N";
cin>>n; i=1; L1:
sum =sum + i;
i++; if(i<=n)
goto L1;

cout<<“Sum of first “<<n<” natural numbers

18”<<sum; return 0;

}
break:-when a break statement is encountered within a loop ,loop is immediately

exited and the program continues with the statements immediately following loop

/*c program to find sum of n natural numbers */
#include<stdio.h> int
main()
{
inti,sum=0,n;
cout<<’Enter N";
cin>>n; i=1; L1:
sum =sum + i;
i++; if(i>n)
break;
goto L1;

cout<<’Sum of first”’<<n<<"natural numbers is:

7’<<sum,; return 0;

¥

Continue:lt is used to continue the iteration of the loop statement by skipping the statements
after continue statement. It causes the control to go directly to the test condition and then to
continue the loop.

/*c program to find sum of n positive numbers read from keyboard*/
#include<stdio.h> int
main()
{
int i ,sum = 0,n,number;
cout<<Enter N"; cin>>n;
for(i=1;i<=n;i++)

{ cout<<“Enter a number:”;
cin>>number; if(number<0)
continue;
sum = sum + number;

}

cout<<“Sum of’<<n<<” numbers is:’<<sum; return
0;

UNIT -2

unctions, Classes and Objects:
Introduction of Classes,Class Definition, Defining a Members,Objects,Access Control,
Class Scope,Scope Resolution Operator,Inline functions,Memory Allocation for Objects,

Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function
Arguments,Friend Functions.

Introduction of Class:
An object oriented programming approach is a collection of objects and each object consists of

corresponding data structures and procedures. The program is reusable and more maintainable. The
important aspect in oop is a class which has similar syntax that of structure.

class: Itis a collection of data and member functions that manipulate data. The data components of class are called
data membersand f unctions that manipulate the data are called member functions.
It can also called as blue print or prototype that defines the variables and functions common to
all objects of certain kind. It is also known as user defined data type or ADT(abstract data type) A class
is declared by the keyword class.

Syntax: -

/ class class_name \

{

Access specifier :
Variable declarations;

Access specifier :
function declarations;

N /

Access Control:

Access specifier or access modifiers are the labels that specify type of access given to members of a
class. These are used for data hiding. These are also called as visibility modes. There are three types of access
specifiers

1.private

2.public

3.protected

1.Private:

If the data members are declared as private access then they cannot be accessed from other functions
outside the class. It can only be accessed by the functions declared within the class. It is declared by the key
word ,,private" .

2.public:
If the data members are declared public access then they can be accessed from other functions out

side the class. It is declared by the key word ,,public* .

3.protected: The access level of protected declaration lies between public and private. This access specifier
is used at the time of inheritance Note:-

If no access specifier is specified then it is treated by default as private

The default access specifier of structure is public where as that of a class is “private’

Example:
class
student

{

private : int roll; char
name[30];
public:
void get_data()
{ cout<<”Enter roll number and name”’:
cin>>roll>>name;
¥
void put_data()
{
cout<<’Roll number:”<<roll<<endl;
cout<<’Name ’<<name<<endl;

b
h
Object:-Instance of a class is called object.
Syntax: class_name
object_name; EX: student s;
Accessing members:-dot operator is used to access members of class

Object-name.function-name(actual arguments);

Ex:
s.get_data();
s.put_data();

Note:

1.1f the access specifier is not specified in the class the default access specifier is private

2.All member functions are to be declared as public if not they are not accessible outside the class.
Object:

Instance of a class is called as object.
Syntax:
Class_name object name;

Example:
student s;
in the above example s is the object. It is a real time entity that can be used
Write a program to read data of a student
#include<iostream> using
namespace std; class
student
{ private:
int roll;
char name[20];

public:
void getdata()

{cout<<”Enter Roll number:”;
cin>>roll;
cout<<”Enter Name:”; cin>>name;
}
void putdata()
{cout<<’Roll no:”<<roll<<endl,

cout<<Name:”’<<name<<endl;

}} int

main() {

student s;
s.getdata();

s.putdata(); returm
0;
¥

Scope Resolution operator:

Scope: -Visibility or availability of a variable in a program is called as scope. There are two

types of scope. i)Local scope ii)Global scope
Local scope: visibility of a variable is local to the function in which it is declared.
Global scope: visibility of a variable to all functions of a program

Scope resolution operator in “::”.

This is used to access global variables if same variables are declared as local and global

#include<iostream.h>
int a=>5;
void main()

{

inta=1;
cout<<’Local a="<<a<<endl;

cout<<’Global a="<<::a<<endl;

¥

Class Scope:
Scope resolution operator(::) is used to define a function outside a class.

#include <iostream>
using namespace std,;
class sample

{ public:

void output(); //function declaration

};
/I function definition outside the class
void sample::output() {
cout << "Function defined outside the class.\n";

1
int main() { sample
obj;
obj.output();
return O;
}

Output of program:
Function defined outside the class.

Write a program to find area of rectangle
#include<iostream.h> class

rectangle

{int

L,B;

public:

}

void get_data();
void area();

void rectangle::get_data()
{ cout<<”Enter Length of rectangle”;

}

cin>>L; cout<<”Enter breadth of
rectangle”; cin>>B;

int rectangle::area()
{ return L*B;

}int
main()

{ rectangle

r

r.get_data();
cout<<’Area of rectangle is”<<r.area();

return O;

}

INLINE FUNCTIONS:

Definition:

An inline function is a function that is expanded in line when it is invoked. Inline expansion
makes a program run faster because the overhead of a function call and return is eliminated. It
is defined by using key word “inline”

Necessity of Inline Function:

One of the objectives of using functions in a program is to save some memory space, which becomes appreciable

>

when a function is likely to be called many times.

Every time a function is called, it takes a lot of extra time in executing a series of instructions for tasks such as
jumping to the function, saving registers, pushing arguments into the stack, and returning to the calling

functi
on.

When a function is small, a substantial percentage of execution time may be spent in such overheads.
One solution to this problem is to use macro definitions, known as macros. Preprocessor macros are

popular in C. The major drawback with macros is that they are not really functions and

therefore, the usual error checking does not occur during compilation.

C++ has different solution to this problem. To eliminate the cost of calls to small functions, C++

proposes a new feature called inline function. General

Form:

inline function-header
{ function body;

Eg:
#include<iostream.h> inline
float mul(float x, float y)

{

}
inline double div(double p, double q)

{ return (p/q);

}int

main()

{

float a=12.345; float

b=9.82;

cout<<mul(a,b);

cout<<div(a,b); return

0;

}

Properties of inline function:
1.Inline function sends request but not a command to compiler
2.Compiler my serve or ignore the request
3.if function has too many lines of code or if it has complicated logic then it is executed as
normal function

Situations where inline does not work:

return (x*y);

>
A function that is returning value , if it contains switch ,loop or both then it is treated as
normal
function.
>
if a function is not returning any value and it contains a return statement then it is treated as normal function
> If function contains
static variables
then it is executed
as normal
function
>

If the inline function is declared as recursive function then it is executed as normal function.
Memory Allocation for Objects: Memory for objects is allocated when they are declared but not when
class is defined. All objects in a given class uses same member functions. The member functions are created
and placed in memory only once when they are defined in class definition

STATIC CLASS MEMBERS

Static Data Members
Static Member Functions
Static Data Members:
A data member of a class

static. A static
has certain special

can be qualified as
member variable
characteristics:

>

> Itis initialized to zero when the first object of its class is created. No other initialization is permitted.Only one
copy of that member is created for the entire class and is shared by all the objects of that class, no matter how

m
any objects are created.

> It is visible only within the class, but its lifetime is the entire program.
> Static data member is defined by keyword ,,static Syntax:

Data type class name::static_variable Name; EX:
int item::count;
#include<iostream.h>
#include<conio.h> class
item
{ static int count; int
number;
public:
void getdata(int a)
{ number=a;
count++;

}

void getcount()

{

cout<<"count is"<<count;
)

int item::count;//decleration

int main() { item a,b,c;
a.getcount();
b.getcount();
c.getcount();
a.getdata(100);
b.getdata(200);
c.getdata(300); cout<<"After
reading data"; a.getcount();
b.getcount();

c.getcount();
return 0; } Output:
countis 0
count is 0 count is
0 After reading
data count is 3
count is 3 count is
3
Static Member Functions
Like static member variable, we can also have static member functions. A member function that is
declared static has the following properties:
A static function can have access to only other static members (functions or variables) declared in
the same class.
A static member function is to be called using the class name (instead of its objects) as follows:
class-name :: function-name;

#include<iostream.h>
class test
{ int code; static int
count;
public:
void setcode()
{ code=++count;

¥
void showcode()
{
cout<<’object number’<<code;
¥

static void showcount()
{ cout<<’count”<<count;
}}int

test::count; int

main()

{ test t1,t2;

t1.setcode();

t2.setcode();
test::showcount();

test t3; t3.setcode();

test::showcount();

t1.showcode();

t2.showcode();

t3.showcode(); return 0;

} Output: count 2 count

3 object number 1 object

number 2 object number

3

Arrays of Objects: Arrays of variables of type “class" is known as "Array of objects”. An array of objects is
stored inside the memory in the same way as in an ordinary array.
Syntax:

class class_name

{

private: data_type
members; public:
data_type members;
member functions;

¥

Array of objects:
Class_name object_name][size];
Where size is the size of array Ex:
Myclass obj[10];
Write a program to initialize array of objects and print them
#include<iostream> using
namespace std; class

MyClass

{

int a;

public:
void set(int x)
{ a=x;
}int
get()
{ return a;
}

}; int

main()

{

MyClass obj[5];

for(int i=0;i<5;i++)

obj[i].set(i); for(int

i=0;i<5;i++)
cout<<"obj["<<i<<"].get():"<<obj[i].get()<<end];
} Output:

obj[0].get():0

obj[1].get():1 obj[2].get():2

obj[3].get():3 obj[4].get():4

Objects as Function Arguments: Objects can be used as arguments to
functions This can be done in three ways a. Pass-by-value or call by

value
b. Pass-by-address or call by address
C. Pass-by-reference or call by reference

a.Pass-by-value — A copy of object (actual object) is sent to function and assigned to the object of called
function (formal object). Both actual and formal copies of objects are stored at different memory locations.
Hence, changes made in formal object are not reflected to actual object. write a program to

swap values of two objects

write a program to swap values of two objects

#include<iostream.h>

using namespace std;

class sample2; class

samplel

{inta;

public:

void

getdat

a(int

X);
friend void display(samplel x,sample2 y);
friend void swap(samplel x,sample2 y);

h

void samplel::getdata(int x)

{
¥

class sample2
{intb;
public:
void getdata(int x);
friend void display(samplel x,sample2 y);

a=X;

friend void swap(samplel x,sample2 y);

h

void sample2::getdata(int x)

{ b=x;

}

void display(samplel x,sample2 y)

{ cout<<"Data in object 1 is"<<endl,
cout<<"a="<<x.a<<endl;
cout<<"Data in object 2 is"<<endl;
cout<<"b="<<y.b<<endl;

¥

void swap(samplel x,sample2 y)

{

int t; t=x.a;
x.a=y.b;
y.b=t; } int

main() { samplel obj1;

sample2 obj2;

objl.getdata(5);

obj2.getdata(15);
cout<<"Before Swap of data between Two objects\n
": display(obj1,0bj2); swap(obj1,0bj2);
cout<<"after Swap of data between Two objects\n "; display(obj1,0bj2);

}

Before Swap of data between Two objects

Data in object 1 is a=5 Data in object 2 is

b=15

after Swap of data between Two objects

Data in object 1 is a=5 Data in object 2

is b=15

b. Pass-by-address: Address of the object is sent as argument to function.

Here ampersand(&) is used as address operator and arrow (->) is used as de referencing operator.
If any change made to formal arguments then there is a change to actual arguments

write a program to swap values of two objects

#include<iostream.h>

using namespace std,;

class sample2; class

samplel { int a;

public:
void getdata(int x); friend void
display(samplel x,sample2 y); friend void
swap(samplel *x,sample2 *y);

h

void samplel::getdata(int x)

{ a=x; } class

sample2 { int

b; public:
void getdata(int x); friend void
display(samplel x,sample2 y);
friend void swap(samplel *x,sample2 *y);

h

void sample2::getdata(int x)

{b=x;}

void display(samplel x,sample2 y)
{ cout<<"Data in object 1 is"<<endl;
cout<<"a="<<x.a<<endl,

¥

void swap(samplel *x,sample2 *y)
{
intt;
t=x->a; Xx-
>a=y->b; y->b=t; } int
main() { samplel obj1;
sample2 obj2;
objl.getdata(5);
obj2.getdata(15);
cout<<"Before Swap of data between Two objects\n *;
display(obj1,0bj2); swap(&objl,&0bj2);
cout<<"after Swap of data between Two objects\n "; display(obj1,0bj2);
}
Before Swap of data between Two objects
Data in object 1 is a=5 Data in object 2
is b=15 after Swap of data between
Two objects
Data in object 1 is a=15
Data in object 2 is b=5

c.Pass -by-reference:A reference of object is sent as argument to function.

Reference to a variable provides alternate name for previously defined variable. If any change made to
reference variable then there is a change to original variable.
A reference variable can be declared as follows

Datatype & reference variable =variable; I

Ex:
int x=5;
int &y=Xx; %
5
Write a program to find sum of n natural numbers usin
prog 9 2000

reference variable

#include<iostream.h> 3
using namespace std,;

int main() { int i=0;

int &j=i; int s=0;
int n; cout<<"Enter
n:"'; cin>>n;
while(j<=n)

{ s=s+i;

i++:

}
cout<<"sum="<<s<<endl;
}

Output: Enter

n:10

sum=>55

write a program to swap values of two objects
#include<iostream.h>
using namespace std,;
class sample2; class
samplel
{inta;
public:
void getdata(int x);
friend void display(samplel x,sample2 y); friend
void swap(samplel &x,sample2 &y);

void samplel::getdata(int x)
{ a=x;
}
class sample2
{intb;
public:
void getdata(int x);
friend void display(samplel x,sample2 y);

friend void swap(samplel &x,sample2 &y);

h

void sample2::getdata(int x)

{ b=x;

}

void display(samplel x,sample2 y)

{ cout<<"Data in object 1 is"<<endl,
cout<<"a="<<x.a<<endl;
cout<<"Data in object 2 is"<<endl,
cout<<"b="<<y.b<<endl;

}
void swap(samplel &x,sample2 &y)

{
int t; t=x.a;
x.a=y.b;
y.b=t;
} int main()
{ samplel obj1;
sample2 obj2;
objl.getdata(5);
obj2.getdata(15);
cout<<"Before Swap of data between Two objects\n ";
display(obj1,0bj2); swap(obj1,0bj2);
cout<<"after Swap of data between Two objects\n ";
display(obj1,0bj2); }
Output:
Before Swap of data between Two objects
Data in object 1 is a=5 Data
in object 2 is b=15
after Swap of data between Two objects Data
in object 1 is a=15
Data in object 2 is b=5

FRIEND FUNC TIONS:The private members cannot be accessed from outside the class. i.e.... a non
member function cannot have an access to the private data of a class. In C++ a non member function can
access private by making the function friendly to a class.

Definition:

A friend function is a function which is declared within a class and is defined outside the class. It
does not require any scope resolution operator for defining . It can access private members of a class. It is
declared by using keyword “friend” Ex:
class sample
{int
XY,
public:

sample(int a,int b);
friend int sum(sample s);

3
sample::sample(int a,int b)

{

x=a;y=b; }

int sum(samples s)
{ int sum;
sum=s.x+s.y; return
0;

}

void main()

{

Sample obj(2,3); int
res=sum(obj);
cout<< “sum="<<res<<endl;

A friend function possesses certain special characteristics:
> It is not in the scope of the class to which it has been declared as friend.
> Since it is not in the scope of the class, it cannot be called using the object of that class. It can be invoked like a
normal function without the help of any object.
> Unlike member functions, it cannot access the member names directly and has to use an object name and dot
members
hip operator with each member name.
> It can be declared either in the public or private part of a class without affecting its meaning.
>

Usually, it has the objects as arguments.

#include<iostream.h> class
sample
{inta;
int b;
public:

void setvalue()

{ a=25;

b=40;

}

friend float mean(sample s);

float mean(sample s)
{ return float(s.a+s.b)/2.0;
}int
main()
{ sample
X;
X.setvalue(); cout<<’Mean
value="<<mean(X);
return O;
}
write a program to find max of two numbers using friend function for two different
classes #include<iostream>
using namespace std; class
sample2; class samplel

{intx;
public:
samplel(int a);
friend void max(samplel s1,sample2 s2)
h
samplel::samplel(int a)
{ x=3a;
}
class sample2
{inty;
public:
sample2(int b);
friend void max(samplel s1,sample2 s2)
h
Sample2::sample2(int b)
{y=b;
}
void max(samplel s1,sample2 s2)
{
If(s1.x>s2.y)
cout<<’Data member in Object of class samplel is larger ”<<endl;
else cout<<”Data member in Object of class sample2 is larger ”<<endl;

}

void main()

{

samplel obj1(3);
sample2 obj2(5);
max(obj1,0bj2); }

Write a program to add complex numbers using friend function

#include<iostream>
using namespace std,;
class complex

{

float real,img; public:
complex(); complex(float
x,float y)
friend complex add_complex(complex c1,complex c2);

3
complex::complex()
{ real=img=0;

}

complex::complex(float x,float y)

{ real=x;img=y;

}

complex add_complex(complex c1,complex c2)
{ complex

t;

t.real=cl.real+c2.real;
t.img=cl.img+c2.img;

return t;
}
void complex::display ()
{ if(img<0)
{img=-img; cout<<real<<"-i"<<img<<endl
}else
{
cout<<real<<"+i"<<img<<endl
¥
}int
main()
{

complex obj1(2,3); complex obj2(-4,-6);
complex obj3=add_compex(obj1,0bj2);
obj3.display();
return O;

Friend Class:A class can also be declared to be the friend of some other class. When we create a friend class
then all the member functions of the friend class also become the friend of the other class. This requires the
condition that the friend becoming class must be first declared or defined (forward declaration).
#include <iostream.h> class
sample_1
{ friend class sample_2;//declaring friend class int

a,b;
public:

void getdata_1()

{ cout<<"Enter A & B values in class sample_1";

cin>>a>>b;

}

void display_1()

{
cout<<"A="<<a<<endl; cout<<"B="<<b<<endl;
}
}; class
sample_2
{ int c,d,sum;
sample_1 obj1;
public: void

getdata_2()

{ objl.getdata_1();
cout<<"Enter C & D values in class sample_2";
cin>>c>>d;

} void

sum_2()

{ sum=objl.a+objl.b+c+d;

by

void display_2()
{ cout<<"A="<<objl.a<<endl;
cout<<"B="<<objl.b<<endl
; cout<<"C="<<c<<endl;
cout<<"D="<<d<<endl;
cout<<"SUM="<<sum<<endl;
} }; int main()
{ sample_1s1,
sl.getdata_1();
sl.display_1();
sample_2 s2; s2.getdata_2();
s2.sum_2();
s2.display_2();
}

Enter A & B values in class sample_1:1 2
A=1

B=2

Enter A & B values in class sample_1:1234
Enter C & D values in class sample_2:A=1
B=2

C=3

D=4

SUM=10

UNIT -3

Constructors, Destructors, Inheritance:

Introduction to Constructors, Default Constructors,Parameterized Constructors, Copy Constructors
Multiple Constructors in a Class, Destructors.

Inheritance :Introduction to inheritance, Defining Derived Classes, Single Inheritance, Multiple

Inheritance, Multi-Level Inheritance, Hierarchical Inheritance, Hybrid Inheritance.

- Introduction to Constructors: C++ provides a special member function called the
constructor which enables an object to initialize itself when it is created. -

Definition:- A constructor is a special member function whose task is to initialize the objects of its class.
It is special because its name is the same name as the class name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor because it constructs the
values of data members of the class.

A constructor is declared and defined as follows:

class integer

t
int m,n;
public:
integer();
y
integer :: integer()
m=0;
n=0;
¥
int main()

{ integer obj1;

integer obj1; => not only creates object obj1 but also initializes its data members m and n to zero.
There is no need to write any statement to invoke the construct or function.

CHARACTERISTICS OF CONSTRUCTOR
» They should be declared in the public section.

They are invoked automatically when the objects are created.
They do not have return type, not even void.
They cannot be inherited, though a derived class can call the base class constructor.

Like other c++ functions, they can have default arguments.

VY V V V

Constructors cannot be virtual.

> We cannot refer to their addresses.
>

They make ,,implicit calls” to the operators new and delete when memory allocation is required.

Constructors are of 3 types:
1. Default Constructor
2. Parameterized Constructor
3. Copy Constructor
1.Default Constructor: A constructor that accepts no parameters is called the default constructor.

#include<iostream.h>

#include<conio.h> class

item

{intmn;
public:
item()
{

m=10; n=20;

b

void put();
h
void item::put()

{
¥

void main()
{ item t;
t.put();
getch(); }
2 .Parameterized Constructors:-The constructors that take parameters are

called parameterized constructors. #include<iostream.h>
class item
{
int m,n;
public:
item(int X, int y)
{
m=x;
n=y;
}

cout<<m<<n;

};

When a constructor has been parameterized, the object declaration statement such as

item t; may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in 2 ways: item t=item(10,20); //explicit call

item t(10,20); //implicit call

Eg:
#include<iostream.h>
#include<conio.h>

class item
{
int m,n;
public:
item(int x,int y)
{
m=x; n=y;
}
void put();

void item::put()

{
cout<<ms<<n;
}
void main()
{
item t1(10,20);
item t2=item(20,30);
t1.put();
t2.put();
getch();
}
3.Copy Constructor: A copy constructor is used to declare and initialize an object from
another object. Eg:
item t2(t1);
or item
t2=t1,

1. The process of initializing through a copy constructor is known as copy initialization.
2. t2=t1 will not invoke copy constructor. t1 and t2 are objects, assigns the values of t1 to t2.

3. A copy constructor takes a reference to an object of the same class as itself as
an argument. #include<iostream.h>
class sample
{
intn;
public:
sample()
{n=0;}
sample(int a)

{

n=a;
}

sample(sample &x)

{

n=x.n;
}
void display()
{ cout<<n;
}

}; void

main()

{ sample

A(100); sample

B(A); sample

C=A;

sample D;
D=A;
A.display();
B.display();
C.display();
D.display();

by

Output: 100 100 100 100

Multiple Constructors in a Class: Multiple constructors can be declared in a class. There can be any
number of constructors in a class.

class comple x
{
float real,img;
public:
complex()//default constructor
{
real=img=0;
¥
complex(float r)//single parameter parameterized constructor
{
real=img=r;
b
complex(float r,float i) //two parameter parameterized constructor
{
real=r;img=i;
b

complex(complex&c)//copy constructor

{

real=c.real; img=c.img;

}

complex sum(complex c)

{

complex t;
t.real=real+c.real:
t.img=img+c.img;
return t;

¥

void show()
{
If(img>0)
cout<<real<<"+i"<<img<<endl;
else
{
img=-img;
cout<<real<<"-i"<<img<<endl;
}
¥
};
void main()
{

complex c1(1,2);
complex c2(2,2);
compex c3;
c3=cl.sum(c3);
c3.show();

¥

DESTRUCTORS: A destructor, is used to destroy the objects that have been created by a constructor.
Like a constructor, the destructor is a member function whose name is the same as the class name
but is preceded by a tilde. Eg: ~item() { }

1. A destructor never takes any argument nor does it return any value.

2. It will be invoked implicitly by the compiler upon exit from the program to clean up storage that is
no longer accessible.

3. Itisagood practice to declare destructors in a program since it releases memory space for future use.

#include<iostream>
using namespace std,;
class Marks

{

public:

int maths;
int science;

/[constructor Marks() { cout <<
"Inside Constructor'<<endl;

cout << "C++ Object created"<<endl;

}

//Destructor

~Marks() { cout << "Inside
Destructor”<<endl; cout << "C++ Object
destructed"<<endl,

}
1

int main()
{

Marks m1;
Marks m2;
return O; }

Output:

Inside Constructor
C++ Object created
Inside Constructor
C++ Object created
Inside Destructor

C++ Object destructed
Inside Destructor

C++ Object destructed

INHERITANCE: . The mechanism of deriving a new class from an old one is called inheritance or
derivation. The old class is referred to as the base class and the new one is called the derived class or sub class
. The derived class inherits some or all of the traits from the base class.

A class can also inherit properties from more than one class or from more than one level.Reusability

is an important feature of OOP

A derived class can be defined by specifying its relationship with the base class in addition to its
own \ details.

Kclass derived-class-name : visibility-mode base-class-name

_ J

The colon indicates that the derived class name is derived from the base-class-name. the visibility mode is
optional and if present, may be either private or protected or public. The default is private. Visibility mode
specifies whether the features of the base class are privately derived or publicly derived.

class ABC : private XYZ /lprivate derivation
{

members of ABC;
%

class ABC:public XYZ

{
members of ABC;

}

/Ipublic derivation
class ABC:protected XYZ {

/I protected derivation members of ABC;
¥
class ABC:XYZ

{
members of ABC;

}o

/lprivate by default

When a base class is privately inherited by a derived class, public members of the base class can
only be accessed by the member functions of the derived class.private membes of base class are inaccessible
to the objects of the derived class

When a base class is protected inherited by a derived class, public members of the base class can
only be accessed by the member functions of the derived class.private membes of base class are inaccessible
to the objects of the derived class. If private members of base class are to be inherited to
derived class then declare them as protected

When the base class is publicly inherited, public members of the base class is publicly inherited,
public members of the base class become public members of the derived class and therefore they are
accessible to the objects of the derived class. In both the cases, the private members are not inherited and
therefore, the private members of a base class will never become the members of its derived class

In inheritance, some of the base class data elements and member functions are ,,inherited* into the
derived class. We can add our own data and member functions and thus extend the functionality of the base
class. Inheritance, when used to modify and extend the capability of the existing classes, becomes a
very powerful tool for incremental program development

Visibility of inherited members

1.Single Inheritance
2.Multi level Inheritance
3.Mutiple Inheritance
4.Hybrid inheritance

5. Hierarchical Inheritance.

Derived class visibility
Base class visibility Public [Private Protected
derivation | derivation derivation
Private —— | Not inhenited Not inherited Not inherited
Protected — Protected Private Protected Tvoes of
Public — Public Private Protected yp)
Inheritance:

1.
SINGLE INHERITANCE: one derived class inherits from only one base class. It is the most
simplest form of Inheritance.

A / /Base class

B //Derived class

#include<iostream>
using namespace std,;
class A

{

public:
int a,b;
void get()

cout<<"Enter any two Integer values"<<endl;
cin>>a>>b;

}

o

class B:public A

{intc;

public:

void

add() {

c=a+b;
cout<<a<<"+'"<<p<<"="<<(;
¥

b

int main()

{
B b;

b.get();
b.add();

¥

Output:

Enter any two Integer values
12
1+2=3

MULTILEVEL INHERITANCE: In this type of inheritance the derived class inherits from a

class, which in turn inherits from some

class for the other. A

#include<iostream.h>

class A

{

public:
int a,b;
void get()
{
cout<<"Enter any two Integer values"<<endl;
cin>>a>>b;
}

o

class B:public A

{

public:
int ¢; void
add()
{ c=a+b;
}

3

class C:public B

{

public:
void show()
{

cout<<a<<"+"<<h<<"="<<;

other class. The Super class for one, is sub

3.
}

};int

main()

{

Cc;
c.get();
c.add();
c.show();

¥
Output:

Enter any two Integer values
12 14
12+14=26

Multiple Inheritance:In this type of inheritance a single derived class may inherit from two or more
than two base classes.

A B

vy

Syntax: C
class D : visibility A,
visibility B,.... {

#include<iostream.h>
class A

{
public:
int a; void getA()
{
cout<<"Enter an Integer value"<<endl;
cin>>a;
}
}; class
B{
public:
int b; void
getB()
{
cout<<"Enter an Integer value"<<endl; cin>>b;
}
3

class C:public A,public B

{
public:

int ¢; void add()
{ c=a+b;

cout<<a<<"+"<<pb<<"="<<c<<endl;
}

}; int

main()

{ C obj;

obj.getA()

0bj.getB()

obj.add():
}

Enter an Integer
value 12 Enter an

Integer value 13
12+13=25

4.Hybrid Inheritance: Hybrid inheritance is combination of two or more inheritances such as
single,multiple,multilevel or Hierarchical inheritances.

A

#include<iostream.h>

class arithmetic

{ protected: int num1,

numz;

public:
void getdata()
{
cout<<"For Addition:";
cout<<"\nEnter the first number: "; cin>>num1;
cout<<"\nEnter the second number: ™;
cin>>numz;
}

}

class plus:public arithmetic

{ protected: int

sum;

public:
void add()
{

sum=numl+num2;
h
class
minus
{
protected:
int n1,n2,diff;
public:
void sub() {
cout<<"\nFor Subtraction:"; cout<<"\nEnter
the first number: "; cin>>n1;
cout<<"\nEnter the second number: ";

cin>>n2;

diff=n1-n2;
by
o
class result:public plus, public minus
{ public: void
display()
{

cout<<"\nSum of "<<numl<<" and "<<num2<<"=
"<<sum; cout<<"\nDifference of "<<nl<<" and "<<n2<<"=
"<<diff; } }; int main() { result z;

z.getdata();
z.add();
z.sub();
z.display();
¥
For Addition:

Enter the first number: 1

Enter the second number: 2

For Subtraction:
Enter the first number: 3

Enter the second number: 4

Sum of 1and 2=3
Difference of 3 and 4= -1

5.Hierarchical Inheritance:- Inheriting is a method of inheritance where one or more derived classes
is derived from common base class.

A

#include<iostream.h>
class A //Base Class

{ public:
int
a,b;
void getnumber()

{

cout<<"\n\nEnter Number :\t"; cin>>a;

Hh
class B : public A //Derived Class 1
{ public:
void square()
{
getnumber(); //Call Base class property
cout<<"\n\n\tSquare of the number :\t"<<(a*a); }
}; class C :public A //Derived
Class 2

{ public:
void cube()
{
getnumber(); //Call Base class property
cout<<"\n\n\tCube of the number :::\t"<<(a*a*a); }
};int
main()
{
B b1, /b1 is object of Derived class 1

b1.square(); //call member function of class
B

C cl; /lc1 is object of Derived class 2
cl.cube(); //call member function of class C

¥

Enter Number : 2
Square of the number : 4

Enter Number : 3

Cube of the number ::: 27

UNIT -4

Pointers, Virtual Functions and Polymorphism:Introduction, Memory Management, new
perator and delete Operator, Pointers to Objects, this Pointer, Pointers to

Derived Classes,Polymorphism,compile time polymorphism,Run time polymorphism, Virtual
Functions,Pure Virtual Functions,Virtual Base Classes,Virtual Destructors,Function
verloading, Operator overloading, Rules for Operator overloading-binary and unary operators.

Introduction to Memory Management:

DYNAMIC MEMORY ALLOCATION & DEALLOCATION (new & delete)

C uses malloc() and calloc() functions to allocate memory dynamically at run time. It uses the
function free() to deallocated dynamically allocated memory.

C++ supports these functions, it defines two unary operators new and delete that perform the task of allocating and
deallocat
ing the memory in a better and easier way.

A object can be created by using new, and destroyed by using delete.

>
A data object created inside a block with new, will remain in existence until it is explicitly

destroyed by using delete.

new operator:-

new operator can be used to create objects of any type .Hence new operator
allocates sufficient memory to hold data of objects and it returns address of the allocated
memory. Syntax:

pointer-variable = new data-type; l

Ex: int *p = new int;

>

To create memory space for arrays:

pointer-variable = new data-type[size]; l

Ex: int *p = new int[10];

delete operator:

If the variable or object is no longer required or needed is destroyed by “delete” operator,
there by some amount of memory is released for future purpose. Synatx:

delete ph
g detetep;

>

MM&*WM
| array: delete [size] pointer-variablg;

Program: write a program to find sum of list of integers

#include<iostream>
using

namespace std;
int main() {

int n,*p;

cout<<"Enter array

size:"™;

cin>>n; p=new

int[n];

cout<<"Enter list of integers"<<endl;
for(int i=0;i<n;i++) cin>>p[i];

/llogic for summation int
s=0;
for(int i=0;i<n;i++) s=s+pli];
cout<<"Sum of array elements is\n"; cout<<s;
delete []p; return
0;
}
Enter array size:5
Enter list of integers
12345
Sum of array elements is
15

Member Dereferencing operator: -

1. [Pointer to a member declarator *

2. |Pointer to member operator ->*

3. |Pointer to member operator *
Pointer to a member declarator ::*

This operator is used for declaring a pointer to the member
of the class #include<iostream.h> class sample

{public:
int x;
3
int main()
{ sample s; /lobject

int sample ::*p;//pointer
decleration s.*p=10; //correct
cout<<s.*p;
¥
Output:10
2.Pointer to member operator -
>* #include<iostream.h> class sample
{ public:
int x;
void display()
{
cout<<"x="<<x<<endl,
¥
h

int main()

{
sample s; /lobject
sample *ptr;
int sample::*f=&sample::x;
s.Xx=10; ptr=&s;
cout<<ptr->*f;
ptr->display();

3. Pointer to member operator
* #include<iostream.h> class

sample
{ public: int x;
};int
main()
{
sample s; /lobject
int sample ::*p;//pointer decleration
s.*p=10; /lcorrect
cout<<s.*p;
}
Pointers to Objects:Pointers to objects are useful for creating objects at run time. To access members
9
arrow operator () and de referencing operator or indirection (*) are used. Declaration of

pointer.
className*ptr
ex:
item *obj;
Here obj is a pointer to object of type item.

class item

{ int code; float
price;

public:
void getdata(int a,float b)
{ code=a;

price=b;

¥
void show()
{ cout<<code:’<<code<<"\n"<<"Price:"<<price<<endl; }

%

Dec laration of object and pointer to class item:
item obj; item
*ptr=&obj; The
member can be
accessed as
follow.

a) Accessing members using dot operator
obj.getdata(101,77.7); obj.show();

b)using pointer ptr->getdata(101,77.7);
ptr->show();
c)Using de referencing operator and dot operator
(*ptr).getdata(101,77.7);
(*ptr).show();

Creating array of objects using pointer:
item *ptr=new item[10];

Above declaration creates memory space for an array of 10 objects of type item.

#include<iostream.h>

class item
{ int code; float

price;
public: void getdata(int a,float

b)

{ code=3a;

price=b;

} void

show()

{ cout<<code<<"\t"<<price<<endl;

} }; int main() { int n; int cd; float pri;
cout<<"Enter number of objects to be created:";
cin>>n; item *ptr=new item[n]; item *p; p=ptr;

for(int i=0;i<n;i++)

{ cout<<"Enter data for object"<<i+1;

cout<<"\nEnter Code:";cin>>cd;
cout<<"Enter price:";cin>>pri; p-
>getdata(cd,pri); p++;

}

p=ptr;
cout<<"Data in various objects are "<<endl; cout<<"Sno\tCode\tPrice\n";
for(i=0;i<n;i++)
{ cout<<i+1<<"\t"; ptr-
>show(); ptr++;

}

return O;

¥

Pointers to Derived Classes: Pointers can be declared to derived class. it can be used to access members
of base class and derived class. A base class pointer can also be used to point to object of derived class but it
can access only members that are inherited from base class.

#include<iostream.h>
class base
{
public:
int a;
void get_a(int x)
{ a=x;
}
void display_a()
{ cout<<"In base"<<"\n"<<"a="<<a<<endl; } };
class derived:public base
{int
b;
public:

void get_ab(int x,int y)
{a=x; b=y;
by
void display_ab()
{
cout<<"In Derived "<<"\n"<<"a="<<a<<"\nb="<<b<<endl;
} }; int main() { base b; base *bptr;
bptr=&b:;//points to the object of base class bptr-
>get_a(100); bptr->display_a();

deri ved d; derived *dptr; dptr=&d;//points to the
object of derived class

dptr->get_a(400);
dptr->display_a(); dptr->get_ab(300,200);
dptr->display_ab();

bptr=&d;//points to the object of derived
class bptr->get_a(400); bptr->display_a();

return O;

}

Output: In
base
a=100

In base
a=400
In Derived
a=300
b=200
In base
a=400

RUNTIME POLYMORPHISM USING VIRTUAL FUNCTIONS
Static & Dynamic Binding

Polymorphism means ,,one name

A\Y

-,,multiple forms.

The overloaded member functions are ,,selected" for invoking by matching arguments, both type and
number. This information is known to the compiler at the compile time and compiler is able to select the
appropriate function for a particular call at the compile time itself. This is called Early Binding or Static
Binding or Static Linking. Also known as compile time polymorphism. Early binding means that an
object is bound to its function call at the compile time

It would be nice if the appropriate member function could be selected while the program is running.
This is known as runtime polymorphism. C++ supports a mechanism known as virtual function to
achieve run time polymorphism.

At the runtime, when it is known what class objects are under consideration, the appropriate version
of the function is invoked. Since the function is linked with a particular class much later after the
compilation, this process is termed as late binding. It is also known as dynamic binding because the
selection of the appropriate function is done dynamically at run time.

Polymorphism

Run time

Compile time

lymorphism

\4
Function Operator Virtual

Overloading Overloading Functions

VIRTUAL FUNCTIONS

Polymorphism refers to the property by which objects belonging to different classes are able to
respond to the same message, but different forms. An essential requirement of polymorphism is therefore
the ability to refer to objects without any regard to their classes.

When we use the same function name in both the base and derived classes, the function in the bas
class is declared as virtual using the keyword virtual preceding its normal declaration.

When a function is made virtual, C++ determines which function to use at runtime based on the type of
object pointed to by the base pointer, rather than the type of the pointer. Thus, by making the base pointer
to point to different objects, we can execute different versions of the virtual function.

#include<iostream.h>
class Base

{ public:

void display()

{

cout<<’Display Base”;

}

virtual void show()

{

cout<<’Show Base”;

h

class Derived : public Base
{ public: void

display()

{ cout<<’Display
Derived”;

¥

void show()

{ cout<<show
derived”; }

}

void main()
{
Base b;
Derived d; Base
*ptr;
cout<<’ptr points to Base”; ptr=&b;
ptr->display(); //calls Base
ptr->show(); //calls Base
cout<<’ptr points to derived”;
ptr=&d;
ptr ->display(); //calls Base ptr-
>show(); //class Derived

¥

Output:

ptr point s to Base
Display Base
Show Base

ptr points to Derived

Display Base
Show Derived

When ptr is made to point to the object d, the statement ptr->display(); calls only the function
associated with the Base i.e.. Base::display()

where as the statement
ptr->show();
calls the derived version of show(). This is because the function display() has not been made virtual

in the Base class.

Rules For Virtual Functions:

When virtual functions are created for implementing late binding, observe some basic rules that
satisfy the compiler requirements.

The virtual functions must be members of some class.
They cannot be static members.

They are accessed by using object pointers.

> LD oe

A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even though it may not be used.

6. The prototypes of the base class version of a virtual function and all the derived class
versions must be identical. C++ considers them as overloaded functions, and the virtual
function

mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer points to any type of the derived object, the reverse is not true. i.e. we
cannot use a pointer to a derived class to access an object of the base class type.

9. When a base pointer points to a derived class, incrementing or decrementing it will not make
it to point to the next object of the derived class. It is incremented or decremented only
relative to its

base type. Therefore we should not use this method to move the pointer to the next object.

10. If a virtual function is defined in the base class, it need not be necessarily redefined in the
derived class. In such cases, calls will invoke the base function.

OVERLOADING

OPERATOR OVERLOADING
C++ has the ability to provide the operators with as special meaning for a data type. The mechanism of
giving such special meanings to an operator is known as operator overloading. We can overload all the
operators except the following:

Class member access operator (“.” And ”

*) Scope resolution operator *“::”
Size operator (sizeof)
Conditional operator

To define an additional task to an operator, specify what it means in relation to the class to which
the operator is applied. This is done with the help of a special function, called operator function.
The process of overloading involves following steps:

1. Create a class that defines the data type that is to be used in the overloading operation.

2. Declare the operator function operator op() in the public part of the class. It may be a
member function or a friend function.

3. Here op is the operator to be overloaded.
4. Define the operator function to implement the required operations.

/General Form:- \

return-type classname :: operator op(arglist)

{
¥

Function body

-\ J

complex complex::operator+(complex c)
{
complex t;
t.real=real+c.real;
t.img=img+c.img;
return t;
}
Concept of Operator Overloading
One of the unique features of C++ is Operator Overloading. Applying overloading to operators means, same
operator in responding different manner. For example operator + can be used as concatenate operator as
well as additional operator.

That is 2+3 means 5 (addition), where as
"2"+"3" means 23 (concatenation).

Performing many actions with a single operator is operator overloading. We can assign a user
defined function to an operator. We can change function of an operator, but it is not recommedned to
change the actual functions of operator. We can't create new operators using this operatorloading.
Operator ov erloading concept can be applied in following two major areas (Benefits)

1. Extension of usage of operators
2. Data conversions
Rules to be followed for operator overloading:-
1.0nly existing operators can be overloaded.
2.0verloaded operators must have at least one operand that is of user defined operators
3.We cannot change basic meaning of an operator.
4.0verloaded operator must follow minimum characteristics that of original operator
5.When using binary operator overloading through member function, the left hand operand must be
an object of relevant class
The number of arguments in the overloaded operator* s arguments list depends

1. Operator function must be either member function or friend function.

2. If operator function is a friend function then it will have one argument for unary
operator
& two arguments for binary operator

3. If operator function is a member function then it will have Zero argument for unary
operator & one arguments for binary operator

Unary Operator Overloading

An unary operator means, an operator which works on single operand. For example, ++ is an unary operator,
it takess single operand (c++). So, when overloading an unary operator, it takes no argument (because object
itself is considered as argument).

Syntax for Unary Operator (Inside a class)

return-type operator operatorsymbol()

/{/body of the function

}

EXx:

void operator-()

{ real=-real;
img=-img;

}

Syntax for Unary Operator (Outside a class) return-
type classname::operator operatorsymbol()

{
¥

//body of the function

Example 1:-
void operator++()

{
¥

counter++;

Example 2:-

void complex::operator-()

{
¥

The following simple program explains the concept of unary overloading.
#include < iostream.h >

#include < conio.h >

/I Program Operator

Overloading class fact

{inta;

real=-real; img=-img;

public:
fact ()

fact (int 1)
{a=i;
} fact operator!()
{int
f=1,i;
fact t;
for (i=1;i<=a;i++)
{ f=f*i;
}
t.a=f; return
t;
}
void display()
{
cout<<’The factorial << a;
}
}; void
main()
{int
X,
cout<<’enter a number”;
cin>>x; fact
S(X),p;
p=Is;
p.display();

Output for the above program:
Enter a number 5
The factorial of a given number 120

Explanation:

We have taken ,,!" as operator to overload. Here class name is fact. Constructor without parameters to take
initially value of ,,x* as 0. Constructor with parameter to take the value of ,,x" . We have create two objects
one for doing the factorial and the other for return the factorial. Here number of parameter for an overloaded
function is 0. Factorial is unary operator because it operates on one dataitem. operator overloading find the
factorial of the object. The display function for printing the result.

Overloading Unary Operator -

Example 1: -

Write a program to overload unary operator —
#include<iostream>

using namespace

std; class complex {

float real,img;

public:
complex();
complex(float x, float y);
void display();

void operator-();

b

complex::complex(

) { real=0;img=0; }

complex::complex(float x, float y)

{ real=x; img=y; } void

complex::display() {

int imag=img;

if(img<0)

{ imag=-img; cout<<real<<" -
i"<<imag<<endl,

} else cout<<real<<"
+i""<<img<<endl;

} void

complex::operator-() {
real=-real; img=-img; }

int main() { complex

c(1,-2); c.display();
cout<<"After Unary - operation\n";
-C;

c.display();

}

Example 2: -
#include<iostream.h> using
namespace std; class space {
int X,y,z; public: void
getdata(int a,int b,int c);
void display();

void operator -();

h

void space :: getdata(int a,int b,int c)
{

X=4a;

y=b;

z=c;

}

void space :: display()
{
cout<<"x="<<x<<endl;
cout<<"y="<<y<<endl,
cout<<"z="<<z<<endl;

by

void space :: operator-()
{ x=-x;

y=-y; Z=-

z; }int

main() {

space s;

s.getdata(1 0,-20,30);
s.display();

-S;

cout<<"after negation\n";
s.display();

}

Output:

x=10
y=-20z=30
after
negation x=-
10 y=20
z=-30

It is possible to overload a unary minus operator using a friend function as follows:
riend void operator-(space &S);

Example 3: -

Unary minus operator using a friend function
#include<iostream.h

>

#include<iostream.h

> using namespace

std; class space { int

X,Y,Z; public:

void getdata(int a,int b,int c);

void display(); friend void
operator-(space &);

3

void space :: getdata(int a,int b,int c)
{

X=4;

y=b;

z=c;

}

void space :: display()
{

cout<<x<<" "<<y<<" "<<z<<endl;

¥

void operator-(space &s)

{

S.X=-8.X;

S.y=-8.Y;
$.2=-8.Z;

}

int main()

{

space S;
S.getdata(10,-20,30);
S.display(); -

S;

cout<<"after negation\n";
S.display();

k

Output:

10 -20 30
after negation
-10 20-30

Binary Operator Overloading

An binary operator means, an operator which works on two operands. For example, + is an binary operator,
it takes single operand (c+d). So, when overloading an binary operator, it takes one argument (one is
object itself and other one is passed argument).

Syntax for Binary Operator (Inside a class)
return-type operator operatorsymbol(argument)

{
//body of the function
}

Syntax for Binary Operator definition (Outside a class)
return-type classname::operator operatorsymbol(argument)

//body of the function
}

Example complex
operator+(complex s)

{ complex
t;
t.real=real+s.real;
t.img=img+s.img;
return t;
}
The following program explains binary operator overloading:
#include < iostream.h
> #include < conio.h >
class sum { int a;

public:

sum()
{a=0;}
sum(int i)
{a=i; }
sum operator+(sum p1)
{ sum
t;
t.a=a+pl.a;
return t;
}
void main ()
{ cout<<”Enter Two Numbers:” int
a,b;
cin>>a>>b;
sum x(a),y(b),z;

z.display(); z=x+y; cout<<’after
applying operator \n”; z.display(); getch(); }
Output for the above program:
Enter two numbers 5 6
After applying operator
The sum of two numbers 11
Explanation: The class name is ,,sum" . We have create three objects two for to do the sum and the other for
returning the sum. * +" is a binary operator operates on members of two objects and returns the result which
is member of a object.here number of parameters are 1. The sum is displayed in display function.

Write a program to over load arithmetic operators on complex numbers using member function
#include<iostream.h>
class complex
{ float real,img;
public:

complex(){ }

complex(float x, float y)

{ real=x;

img=y

}
complex operator+(complex c) void
display();
3
complex complex::operator+(complex c)
{ complex temp;
temp.real=real+c.real
; temp.img=img+c.img;
return temp;
¥
void complex::display()
{int
imag=img;
If(img<0)
{ imag=-imag;

cout<<real<<’-i"<<imag;
} else cout<<real<<’+i”<<img;
}int
main()
{
complex c1,c2,c3;
cl=complex(2.5,3.5);
c2=complex(1.6,2.7); c3=cl+c2;
c3.display(); return
0;
by

Overloading Binary Operators Using Friends

1. Replace the member function declaration by the friend function declaration in
the class friend complex operator+(complex, complex) 2. Redefine the
operator function as follows:
complex operator+(complex a, complex b)
{ return complex((a.x+b.x),(a.y+b.y));

¥
Write a program to over load arithmetic operators on complex numbers using
friend function #include<iostream.h> class complex
{ float real,img;
public:

complex(){ }

complex(float x, float y)

{ real=x;

img=y

¥

friend complex operator+(complex); void

display();
o

complex operator+(complex c1, complex c2)

{ complex temp;

temp.real=cl.real+c2.real;
temp.img=cl.img+c2.img

return temp;

¥
void complex::display()
{
If(img<0)
{ img=-img;
cout<<real<<’-i’<<img;
} else cout<<real<<’+i”<<img;
}int
main() {

complex c1,c2,c3;
cl=complex(2.5,3.5);
c2=complex(1.6,2.7);
c3=cl+c2;

c3.display();
return 0;

UNIT -5

/Templates and Exception handling: \
Introduction, Class Templates, Class Templates with Multiple Parameters, Function

Templates, Function Templates with Multiple Parameters, Member Function Templates.
Exception Handling :Basics of Exception Handling, Types of exceptions, Exception Handing
flechanism, Throwing and Catching Mechanism, Rethrowing an Exception, Specifying
xceptions.

o ®

GENERIC PROGRAMMING(Templates)

Generic programming is an approach where generic types are used as parameters in algorithms so that
they work for a variety of suitable data types and data structures.

A significant benefit of object oriented programming is reusability of code which eliminates
redundant coding. An important feature of C++ called templates strengthens this benefit of OOP and
provides great flexibility to the language. Templates support generic programming, which allows to
develop reusable software components such as functions, classes etc.. supporting different data types in a
single framework.

M- =2mM

Templates Concept
Introduction
Instead of writing different functions for the different data types, we can define common

function. For example

int max(int a,int b); // Returns maximum of two integers float

max(float a,float b); // Return maximum of two floats char max(char

a,char b); // Returns maximum of two characters

(this is called as function overloading)

But, instead of writing three different functions as above, C++ provided the facility called "Templates".
With the help of templates you can define only one common function as follows:

T max(T a,T b); // T is called generic data type

Template functions are the way of making function/class abstracts by creating the behavior of function
without knowing what data will be handled by a function. In a sense this is what is known as “generic
functions or programming”.
Template function is more focused on the algorithmic thought rather than a specific means of single data
type. For example you could make a templated stack push function. This push function can handle the
insertion operation to a stack on any data type rather then having to create a stack push function for each
different type.
Syntax:

template < class type > ret_type

fun_name(parameter list)

{

} /lwww .suhritsolutions.com

Features of templates:-

1. It eliminates redundant code
2. It enhances the reusability of the code.
3. It provides great flexibility to language

Templates are classified into two types. They are

1 .Function templates
2.Class Templates.
F unction Templates
The templates declared for functions are called as function templates. A function template defines how an
individual function can be constructed. Syntax :
template < class type,......... >
ret _type fun_ name(arguments)

................. /1 body of the function

CLASS TEMPLATES
The templates declared for classes are called class templates. A class template specifies how
individual classes can be constructed similar to the normal class specification. These classes model a
generic class which support similar operations for different data types. General Form of a Class Template

template <class T>
class class-
name {

A class created from a class template is called a template class. The syntax for defining an object of
a template class is:

classname<type> objectname(arglist);

#include<iostream.h>
#include<conio.h>
template <class T> class
swap
{T
a,b;
public:

swap(T x,Ty)

{ a=x;
b=y;
}
void swapab()
{
T temp;
temp=a;

a=b;
b=temp;
}
void showdata()
{ cout<<a<<b;
}
3

void main()
{
int m,n;
float m1,n1;
cout<<"Enter integer values”’; cin>>m>>n;
cout<<"Enter floating
values”; cin>>m1>>nl;
swap<int> c1(m,n);
swap<float> c2(m1,nl);
cl.swapab(); c1.showdata();
c2.swapab(); c¢2.showdata();

}

Class Template with Multiple Parameters

Syntax:

template <class T1, class T2,....>
class class-name {

#include<iostream.h>
template <class

T1,class T2> class Test {

Tla; T2

b;

public:

Test(T1 x,T2y)
{ a=x; b=y,
} void
show() {
cout<<a<<b;

}

}

void main()

{

Test<float,int>
test1(1.23,123); Test<int,char>
test2(100,“w*); test1.show();
test2.show();

¥

FUNCTION TEMPLATES
Like class template we can also define function templates that would be used to create a family of
functions with different argument types.

General Form:
template <class T>
return-type function-name (arguments of type T) {

#include<iostream.h>
template<class T>
void swap(T &x, T &Yy)
{
T temp = X;
X=Y,
y=temp; }
void fun(int m,int n,float a,float b)
{
cout<<ms<<n;
swap(m,n);
cout<<m<<n;
cout<<a<<b; swap(a,b);
cout<<a<<b;
}int
main() {
fun(100,200,11.22,33.44); return
0;
}
Example 2:-
#include < iostream.h >
#include < conio.h >
template T max(T a, T
b)
{
if(a>h)
return a;
else

return b;
} void
main()

{ char chl,ch2,ch3;
cout<<"enter two characters”’<< ch2<<
ch3; cin>>ch2>>ch3; d=max(ch2,ch3);
cout<<’max(ch2,ch3)’<<chl;
int a,b,c; cout<<’enter two
integers:”; cin>>a>>b;
c=max(a,b);
cout<<’max(a,b):”’<< c<< endl;
float f1,f2,13;
cout<<"enter two floats< f12
>:; cin>>f1,f2; f3=max(f1,f2);
cout<<’max(f1,2):"<< {3;

output:
enter two characters: A,B
max(ch2,ch3):B enter two
integers:20,10 max (a,b)
:20 enter two floats
:20.5,30.9 max (f1,f2)
:30.9

Function Template with Multiple Parameters
Like template class, we can use more than one generic data type in the template statement, using
a comma -separated list as shown below: template <class T1, class T2,.> return-type
function- name(arguments of types T1,72.) {

#include<iostream.h>
#inlcude<string.h>
template<clas T1, class T2>
void display(T1 x, T2 y)

{

cout<<x<<y;

}int

main()

{
display(1999,”EBG”);

display(12.34,1234); return
0;
}

Exception handling

Exceptions: Exceptions are runtime anomalies or unusual conditions that a program may encounter while
executing .Anomalies might include conditions such ass division by zero, accessing an array outside of its
bounds or running out of memory or disk space. When a program encounters an exception condition, it
must be identified and handled.

Exceptions provide a way to transfer control from one part of a program to another. C++
exception handling is built upon three keywords: try, catch, and throw.

Types of exceptions:There are two kinds of exceptions
1.Synchronous exceptions
2.Asynchronous exceptions

1.Synchronous exceptions:Errors such as “Out-0f-range index” and “over flow” are synchronous
exceptions

2.Asynchronous exceptions: The errors that are generated by any event beyond the control of the program
are called asynchronous exceptions

The purpose of exception handling is to provide a means to detect and report an exceptional circumstance

Exception Handling Mechanism:
An exception is said to be thrown at the place where some error or abnormal condition is detected. The
throwing will cause the normal program flow to be aborted, in a raised exception. An exception is thrown
programmatic, the programmer specifies the conditions of a throw.
In handled exceptions, execution of the program will resume at a designated block of code, called
a catch block, which encloses the point of throwing in terms of program execution. The catch block can
be, and usually is, located in a different function than the point of throwing.

C++ exception handling is built upon three keywords: try, catch, and throw.

Try is used to preface a block of statements which may generate exceptions. This block of statements is known as
try block. When an exception is detected it is thrown by using throw statement in the try block. Catch block
catches the exception thrown by t hrow statement in the try block and handles it appropriately.

try block

Statement that causes an
Throws exception exception

object : _
Exception object creator

catch block

Statement that handles the
exception

#include<iostream>

try

{
throw val, —— T
__________ M throws
___________ exception

) / wvalue

catch{ data-type arqg) o4—"

!

L

o o’

using
namespace std; int
main() {
int a,b;
cout<<"Enter any two integer values";
cin>>a>>b;
int x=a-b; try

{if(x!=0)

{ cout<<"Result(a/x)="<<a/x<<endl;

}else {

throw Xx;

¥
} catch(int ex)

{

cout<<"Exception caught:Divide By Zero \n"; }

THROWING MECHANISM
When an exception is detected, it can be thown by using throw statement in any one of the following forms

throw(exception);

> .
throw exception;

> throw: CATCHING MECHANISM:

Catch block is as below
Catch(data type arg)
{
/[statements for handling
/lexceptions

¥

Multiple catch statements: try
{

/ltry block }

catch(data typel arg)

{
/Icatch block1

}
catch(data type2 arg)

{
/[catch block?2 }

catch(data typeN arg)

{
/Icatch blockN

¥

* When an exception is thrown, the exception handler are searched in order fore an appropriate
match.

» ltis possible that arguments of several catch statements match the type of an exception. In
such cases the first handler that matches the exception type is executed

Write a Program to catch multiple catch statements
#include<iostream.h>
void test(int x)

{
try
{ if(x==1) throw x; else
if(x==0) throw 'X’; else
if(x==-1) throw 1.0;
cout<<"end of try block"<<endl,
¥
catch(char c)
{
cout<<"caught a character"<<endl;
¥
catch(int m)
{
cout<<"caught an integer"<<endl;
¥
catch(double d)
{
cout<<"caught a double"<<endl;
¥
}int
main() {
test(1);

test(0);

test(-1);
test(2);
return O;

¥

Output:

caught an integer
caught a character
caught a double
end of try block

Catch All Exceptions:

all possible types of exceptions and therefore may not be able to design independent catch handlers to
catch them. In such circumstances, we can force a catch statement to catch all exceptions instead of a
certain type alone.

Write a Program to catch all exceptions
#include<iostream.h>
void test(int x)

{

try

{

if(x==0) throw x;

if(x==0) throw 'x'; if(x==-
1) throw 1.0;

} catch(...)

{

cout<<"caught exception"<<endl;
}}int

main() {

test(-1);

test(0);

test(1);

return O;

}
Re-throwing an Exception:

It is possible to pass exception caught by a catch block again to another exception handler. This
I known as Re-throwing.

#include <iostream>
using namespace std,;

void MyHandler()
{try
{ throw "hello";

}

catch (const char*)
{
cout <<"Caught exception inside MyHandler\n";
throw; //rethrow char* out of function }
}int
main()
{ cout<< "Main start...."<<endl;
try
{
MyHandler();
}
catch(const char*)
{ cout <<"Caught exception inside Main\n";
} cout << "Main end";
return O;

Specifying Exceptions:
Specification of exception restrict functions to throw some specified exceptions only with the use of
throw(exception list) in the the header of the function.
General form
Type function_name(argument list) throw(exceptions -list)
{
Statements try
{ statements

¥

¥

#include <iostream>
using namespace std; void
test(int x)
throw(int,float,char)
{ switch(x) { case
1:throw Xx; break;
case 2:throw 'X’; break;
case 3:throw double(x); break;
case 4:throw float(x); break;
}
}int
main()
{try
{ test(4);//test(4) leads to abnormal termination

}

catch(int 1)

{ cout <<"Caught int type exception\n™;
} catch(float

f)

{ cout <<"Caught float type exception\n™;

} catch(char

c)

{ cout <<"Caught char type exception\n™;

} catch(double

i)

{ cout <<"Caught Double type exception\n";

}

return O;

