

OBJECT ORIENTED PROGRAMMING

Objectives

To teach the student the concepts of object oriented and procedure programming

To differentiate between functions, classes and objects

To learn to overload functions and operators

To design applications using dynamic memory management techniques

To teach the student to implement generic programming and exception handling

Unit I

Introduction to Object Oriented Programming: Object oriented paradigm-Differences between

Object Oriented Programming and Procedure oriented programming, Basic concepts of Object

Oriented Programming, Encapsulation, Inheritance and Polymorphism, Benefits of OOP, Structure of

a C++ program, namespace, Data types, C++ tokens, Identifiers, Variables, Constants, Operators,

Control structures & Loops.

Unit-II

Functions, Classes and Objects:

Introduction of Classes, Class Definition, Defining a Members,Objects,Access Control, Class Scope,

Scope Resolution Operator, Inline functions, Memory Allocation for Objects, Static Data Members,

Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friend Functions.

Unit-III

Constructors, Destructors, Inheritance:

Introduction to Constructors, Default Constructors, Parameterized Constructors, Copy Constructors,

Multiple Constructors in a Class, Destructors. Inheritance :

Introduction to inheritance, Defining Derived Classes, Single Inheritance, Multiple Inheritance, Multi

level Inheritance, Hierarchical Inheritance, Hybrid Inheritance.

Unit-IV

Pointers, Virtual Functions and Polymorphism:

Introduction to Memory management, new operator and delete operator, Pointers to objects,

Pointers to Derived Classes, Polymorphism, Compile time polymorphism, Run time polymorphism,

Virtual Functions, Overloading- Function Overloading, Operator overloading.

Unit-V

Templates and Exception handling:

Introduction to Templates, Class Templates, Class Templates with Multiple Parameters, Function

Templates, Function Templates with Multiple Parameters.

Exception handling:

Basics of Exception Handling, Types of exceptions, Exception Handing Mechanism, Throwing and

Catching Mechanism, Rethrowing an Exception, Specifying Exceptions.

Outcomes:

To differentiate object oriented programming and procedural programming.

To construct classes, functions and objects

To implement the constructors, destructors and inheritance

To develop programs using dynamic memory management techniques To

apply exception handling and generic programming.

UNIT -1

Concepts of Object Oriented programming: Object oriented paradigm-differences between

Object Oriented Programming and Procedure oriented programming, Basic concepts of Object
Oriented Programming,Encapsulation, Inheritance and Polymorphism. Benefits of OOP .Structure of
a C++ program, namespace, Data types, C++ tokens, identifiers, variables, constants, operators,

control structures & loops.

 Overview of C language:

 1.C language is known as structure oriented language or procedure oriented language

2.Employs top-down programming approach where a problem is viewed as a sequence of tasks to

be performed.

3.All program code of c can be executed in C++ but converse many not be possible

4. Function overloading and operator overloading are not possible.

5. Local variables can be declared only at the beginning of the block.

6. Program controls are through jumps and calls to subroutines.

7.Polymorphism, encapsulation and inheritance are not possible.

For solving the problems, the problem is divided into a number of modules. Each module is a subprogram.

8. Data abstraction property is not supported by procedure oriented language.

9. Data in procedure oriented language is open and can be accessed by any function.

 Overview of C++ language:

1. C++ can be considered as an incremental version of c language which consists all programming

language constructs with newly added features of object oriented programming.

2. c++ is structure(procedure) oriented and object oriented programming language.

3. The file extension of C++ program is “.CPP”

4. Function overloading and operator overloading are possible.

5. Variables can be declared in inline i.e when required 6. In c++ more emphasis is give on data rather

than procedures

7. Polymorphism, encapsulation and inheritance are possible.

8. Data abstraction property is supported by c++.

9. Data access is limited. It can be accessed by providing various visibility modes both for data and

member functions. there by providing data security by data hiding

10. Dymanic binding is supported by C++

11. .It supports all features of c language

12. It can be called as an incremental version of c language

Difference Between Procedure Oriented Programming (POP) & Object Oriented Programming (OOP)

 Procedure Oriented Programming Object Oriented Programming

 1

program is divided into small parts

called functions.

 program is divided into parts called objects.

 2

Importance is not given to data but to

functions as well as sequence of actions

to be done.

Importance is given to the data rather than

procedures or functions because it works as

a real world.

 3 follows Top Down approach. OOP follows Bottom Up approach.

 4

 It does not have any access specifier.

 OOP has access specifiers named Public,

Private, Protected, etc.

5

Data can move freely from

function to function in the system.

objects can move and communicate with

each other through member functions.

6

To add new data and function in POP is not

so easy.

OOP provides an easy way to add new data and

function.

 Most function uses Global data for sharing In OOP, data can not move easily from

7 that can be accessed freely from function to function to function,it can be kept public or

function in the system.

private so we can control the access of data.

8

It does not have any proper way for hiding

data so it is less secure.

OOP provides Data Hiding so provides more

security.

 In OOP, overloading is possible in the form of

9

Overloading is not possible.

Function Overloading and Operator

Overloading.

 Example of Procedure Oriented

10

Programming are : C, VB, FORTRAN,

Pascal.

Example of Object Oriented Programming are :

C++, JAVA, VB.NET, C#.NET.

 Principles(or features) of object oriented programming:

1. Encapsulation

2. Data abstraction

3. Polymorphism

4. Inheritance

5. Dynamic binding

6. Message passing

Encapsulation: Wrapping of data and functions together as a single unit is known as encapsulation. By

default data is not accessible to outside world and they are only accessible through the functions which are
wrapped in a class. prevention of data direct access by the program is called data hiding or information
hiding

 Data abstraction :

Abstraction refers to the act of representing essential features without including the

back ground details or explanation. Classes use the concept of abstraction and are defined as a list of

attributes such as size, weight, cost and functions to operate on these attributes. They encapsulate all essential
properties of the object that are to be created. The attributes are called as data members as they hold data
and the functions which operate on these data are called as member functions.

Class use the concept of data abstraction so they are called abstract data type (ADT)

Polymorphism: Polymorphism comes from the Greek words “poly” and “morphism”. “poly” means many
and “morphism” means form i.e.. many forms. Polymorphism means the ability to take more than one form.

For example, an operation have different behavior in different instances. The behavior depends

 upon the type of the data used in the operation.

 Different ways to achieving polymorphism in C++ program:

1) Function overloading 2) Operator overloading

 #include<iostream>
using namespace

std; int main() {int

a=4; a=a<<2;

cout<<”a=”<<a<<endl;

 return 0;

}

Inheritance: Inheritance is the process by which one object can acquire the properties of another.

Inheritance is the most promising concept of OOP, which helps realize the goal of constructing software

from reusable parts, rather than hand coding every system from scratch. Inheritance not only supports reuse
across systems, but also directly facilitates extensibility within a system. Inheritance coupled with
polymorphism and dynamic binding minimizes the amount of existing code to be modified while enhancing

a system.

When the class child, inherits the class parent, the class child is referred to as derived class (sub class)
and the class parent as a base class (super class). In this case, the class child has two parts: a derived part
and an incremental part. The derived part is inherited from the class parent. The incremental part is the new

code written specifically for the class child.

Dynamic binding:

Binding refers to linking of procedure call to the code to be executed in response to the call. Dynamic
binding(or late binding) means the code associated with a given procedure call in not known until the time
of call at run time.

Message passin g:

An object oriented program consists of set of object that communicate with each other. Objects

communicates with each other by sending and receiving information .

A message for an object is a request for execution of a procedure and there fore invoke

the function that is called for an object and generates result

Benefits of object oriented programming (OOPs)

  Reusability: In OOP‟ s programs functions and modules that are written by a user can be reused by



 other users without any modification. 

  Inheritance: Through this we can eliminate redundant code and extend the use of existing classes.


 Data Hiding: The programmer can hide the data and functions in a class from other classes. It helps the programmer to
 build the secure programs.




Reduced complexity of a problem: The given problem can be viewed as a collection of different objects. Each object is

responsible for a specific task. The problem is solved by interfacing the objects. This technique reduces the complexity of

the program design.



Easy to Maintain and Upgrade: OOP makes it easy to maintain and modify existing code as new objects


can be created with small differences to existing ones. Software complexity can be easily managed.



 Message Passing: The technique of message communication between objects makes the interface


with external systems

easier.


 



Modifiability: it is easy to make minor changes in the data representation or the procedures in an

OO program. Changes inside a class do not affect any other part of a program, since the only



public interface that the external world has to a class is through the use of methods.

BASIC STRUCTURE OF C++ LANGUAGE : The program written in C++ language follows this basic

structure. The sequence of sections should be as they are in the basic structure. A C program should have

one or more sections but the sequence of sections is to be followed.

1. Documentation section

2. Linking section

3. Definition section

4. Global declaration section & class declarations

 5.Member function definition

6. Main function section

main()

 {

Declaration section

 Executable section

}

1. DOCUMENTATION SECTION : comes first and is used to document the

use of logic or reasons in your program. It can be used to write the program's objective,

developer and logic details. The documentation is done in C language with /* and */ .

Whatever is written between these two are called

 comments.

2. LINKING SECTION : This section tells the compiler to link the certain

occurrences of keywords or functions in your program to the header files specified

in this section. e.g. #include<iostream>

 using namespace std;

 directive causes the preprocessor to add the contents of the iostream file to the program. It contains declarations


for cout and cin.



cout is a predefined object that represents the standard output stream. The operator << is an



 insertion operator, causes the string in double quotes to be displayed on the screen.

 Insertion Operator variable

The statement cin>>n; is an input statement and causes the program to wait for the user to type in a number.

The number keyed is placed on the variable “n”. The identifier cin is a predefined object in C++ that
corresponds to the standard input stream. The operator >> is known as extraction operator. It extracts the
value from the keyboard and assigns it to the value variable on its right.

 Object Extraction operator variable

3. DEFINITION SECTION : It is used to declare some constants and assign them some value.

e.g. #define MAX 25

Here #define is a compiler directive which tells the compiler whenever MAX is found in

 the program replace it with 25.

4. GLOBAL DECLARATION SECTION : Here the variables and class definations which are used

through out the program (including main and other functions) are declared so as to make them global(i.e
accessible to all parts of program). A CLASS is a collection of data and functions that act or manipulate
the data. The data components of a class are called data members and function components of a class are

 called member functions

A class ca also termed as a blue print or prototype that defines the variable or functions common to

all objects of certain kind. It is a user defined data type

e.g.

 int i; //this declaration is done outside and before main()

5. SUB PROGRAM OR FUNCTION SECTION : This has all the sub programs or the functions

which our program needs.

void display()

{ cout<<”C++ is better that

C”;

 }

SIMPLE „C++‟ PROGRAM:

#include<iostream> using

namespace std; void

display()

{ cout<<”C++ is better that C”;

s creen

cout << “C++”

Object

cin >> 45.5

Keyboard

 } int

main()

{ display()

return 0;

}

6. MAIN FUNCTION SECTION : It tells the compiler where to start the execution

 from main()

{ point from execution starts

} main function has two

sections

1. declaration section : In this the variables and their data types are declared.

2. Executable section or instruction section : This has the part of program which actually performs

the task we need.

 namespace:

namespace is used to define a scope that could hold global identifiers.

 ex:-namespace scope for c++ standard library.

A classes ,functions and templates are declared within the namespace named

std using namespace std;-->directive can be used.

 user defined name space:

syntax for defining name space is

 namespace namespace_name

{

//declarations of variables.functions,classes etc...

} ex:

 #include<iostream>

using namespace std; namespace

sample

{` int m; void display(int

n)

 { cout<<"in namespace

N="<<n<<endl;

}

}

 using namespace sample;

int main() {

int a=5; m=100;

display(200);

cout<<"M in sample name space:"<<sample::m; return

0;}

 #include<iostream>

This directive causes the preprocessor to add content of iostream file to the program.

some old versions of C++ used iostream.h .if complier does not support ANSI

 (american nation standard institute) C++ then use header file iostream.h

DATA TYPES:
A data type is used to indicate the type of data value stored in a variable. All C compilers support a

variety of data types. This variety of data types allows the programmer to select the type appropriate to

the needs of the application as well as the machine. ANSI C supports the following classes of data

types: 1.Primary (fundamental) data types.

Primary data types:
 1.integer data type
 2.character data type

 3.float point data type

 4.Boolean data type
 5.void data type

 integer data type:-
This data type is used to store whole numbers. These numbers do not contain the decimal part. The size of the integer

depends upon the world length of a machine (16-bit or 32-bit). On a 16-bit machine, the range of integer values is -

32,768 to +32,767.integer variables are declared by keyword int. C provides control over range of integer values and

storage space occupied by these values through the data types: short int, int, long int in both signed and unsigned
forms.

 Signed integers: (16-bit machine):

 A signed integer uses 1 bit for sign and 15 bits for the magnitude of the number

MSB(most significant bit)

=

 100(10) 00000000001100100(2)

Representation of negative number :

 -100(10)=1111111110011100(2)

15 14

13 12

11 10

9 8 7

-1*2 +1*2 +1*2 +1*2 +1*2 +1*2 +1*2 +1*2

+1*2 +
 6 5 4 3 2 1 0

0*2 +0*2 +1*2 +1*2 +1*2 +0*2 +0*2

= -32768+16384+8192+4096+2048+1024+512+256+128+0+0+26+8+4+0+0 =-

100(10)

NOTE: Signed bit (MSB BIT): 0 represents positive integer, 1 represents negative numbers

Unsigned integers: Unsigned integers use all 16 bits to store the magnitude. Stores numbers does not have any

sign & Size qualifier and range of integer data type on a 16-bit and machine are shown in the table:

MEMORY REQUIRED

 RANGE

DATA TYPE

OR STORAGE SIZE IN BYTES FORMAT

SPECIER TURBO C GCC/ COMPILERS TURBO C GCC

(16 BIT)

IN LINUX

(32 BIT)
(16 BIT)

 (32 BIT)

short int

-32768

-32768

or

2

2

To

153276715

 To
32767

 15 15

%hd

signed short int (-2 to +2 -1) (-2 to +2 -1)

short int

0 to 65535

 0 to 65535

or

signed short int
2

2

(0 to +2 -1)

 (0 to +2 -1)

%hu

signed int

-32768

-2,147,843,648

%d

or

int

2

4

To

153276715
 (-2 to +2 -1)

 to
2,147,843,647

 31 31
 (-2 to +2 -1)

or

%i
unsigned int

2

4

0 to 65535
16

 (0 to +2 -1)

 0 to 4,294,967,295
32

 (0 to2 -1)

%u

long int -2,147,843,648 -2,147,843,648
or

signed long int

4 4

to
2,147,843,647

 31 31
 (-2 to +2 -1)

 to
2,147,843,647

 31 31
 (-2 to +2 -1)

%ld

unsigned long int

4

4

0 to 4,294,967,295
32

(0 to2 -1)

 0 to 4,294,967,295
32

 (0 to2 -1)

%lu

long long int

or

-9223372036854775808

signed long long

 int

Not
supported

8

 To
9223372036854775807

 63 63
 (-2 to +2 -1)

%Ld

 Character data type: (char)

A single character can be defined as a character data type. Character data type occupies one byte of

memory for storage of character. The qualifiers signed or unsigned can be applied on char data

type. char is the key word used for declaring variables size and range of character data type on 16

bit or 32 bit machine can be shown below

Data type MEMORY REQUIRED RANGE FORMAT SPECIER

 OR STORAGE SIZE (in bytes)

char or signed char 1

7 -
128 to 127(-2 7 to 2

-1) %c

Unsigned signed char 1 0 to 256 (0 to 2 -1) %c

Floating Point Types:

 Floating point number represents a real number with 6 digits precision occupies 4 bytes of memory.
Floating point variables are declared by the keyword float.

Double floating point data type occupies 8 bytes of memory giving 14 digits of precision. These

are also known as double precision numbers. Variables are declared by keyword double long

double refers to a floating point data type that is often more precise than double precision.

Boolean or logical data type is a data type, having two values (usually denoted true and false), intended

to represent the truth values of logic and Boolean algebra. It is named after George Boole, who first

defined an algebraic system of logic in the mid 19th century. The Boolean data type is the primary result

of conditional statements, which allow different actions and change control flow depending on whether a

programmer -specified Boolean condition evaluates to true or false.

C99 added a Boolean (true/false) type which is defined in the <stdbool.h>

header Boolean variable is defined by kkey word bool; Ex:

bool b;

where b is a variable which can store true(1) of false (0)

Void type 

The void type has no values. This is usually used to specify the return type of functions. The type of the function

said to be void when it does not return any value to the calling function. This is also used for declaring general

purpose pointer called void pointer.

Derived data types.

 Derived datatypes are Arrays , pointer and references are examples for derived data types. User-

defined data types:

they The data types defined by the user are known as the user-defined data types.

They are structure,union,class and enumeration

C++ Tokens

IDENTIFIERS: Identifiers are the names given to various program elements such as variables, functions

and arrays. These are user defined names consisting of sequence of letters and digits.

Rules for declaring identifiers:
  The first character must be an alphabet or underscore.



  It must consist of only letters, digits and underscore.


  Identifiers may have any length but only first 31 characters are significant.
 It must not contain white

space or blank space.


 We should not use keywords as

identifiers.
 Upper and lower case letters

are different.


Example: ab Ab aB AB are treated differently Examples of valid

identifiers: a, x, n, num, SUM, fact, grand_total, sum_of_digits, sum1

Bo olean data type: -

 Examples of Invalid identifiers: $amount, ³num´, grand-total, sum of digits, 4num.

$amount : Special character is not permitted grand-total :

hyphen is not permitted. sum of digits : blank spaces between

the words are not allowed.

4num : should not start with a number (first character must be a letter or underscore

Note: Some compilers of C recognize only the first 8 characters only; because of this they are unable

to distinguish identifiers with the words of length more than eight characters.

Variables: A named memory location is called variable.

 OR
It is an identifier used to store the value of particular data type in the memory.

Since variable name is identifier we use following rules which are same as of identifier

Rules for declaring Variables names:

  The first character must be an alphabet or underscore.
 It must consist of only letters, digits and underscore.


 Identifiers may have any length but only first 31 characters are significant.


 It must not contain white space or blank space.


 We should not use keywords as identifiers.



  Upper and lower case letters are different.
 Variable names must be unique in the given scope

 Ex:int a,b,a;//is in valid


Int a,b;//is valid

Variable declaration: The declaration of variable gives the name for memory location and its size

and specifies the range of value that can be stored in that location.

Syntax:

Data type variable name;

Ex: a 2000

int a=10;

float x=2.3; x 2.300000 5000

 KEYWORDS :

There are certain words, called keywords (reserved words) that have a predefined meaning in

„C++‟ language. These keywords are only to be used for their intended purpose and not as identifiers. The

following table shows the standard „C++‟ keywords

auto break case char const continue

default do double else enum extern

float for goto if int long

register return short signed sizeof static

struct switch typedef union unsigned void

volatile while class friend new delete

this public private protected inline try

throw catch template

 CONSTANTS:

10

Constants refer to values that do not change during the execution of a program.

Constants can be divided into two major categories:

1.Primary constants:

a)Numeric constants
 Integer constants.

 Floating-point (real)
 constants. b)Character constants


 Single character constants

 String

constants
2.Secondary constants:

 Enumeration constants.
  Symbolic constants.


  Arrays, unions, etc.



Rules for declaring constants:

1.Commas and blank spaces are not permitted within the constant.
2.The constant can be preceded by minus (-) signed if required.

3.The value of a constant must be within its minimum bounds of its specified data type.

Integer constants: An integer constant is an integer-valued number. It consists of sequence
of digits. Integer constants can be written in three different number systems:

1.Decimal integer (base 10).

2.Octal integer (base 8).

3.Hexadecimal (base 16).

Decimal integer constant: It consists of set of digits, 0 to 9.

 Valid declaration: 0, 124, -56, + 67, 4567 etc.

 Invalid declaration: $245, 2.34, 34 345, 075. 23,345,00.

it is also an invalid declaration.

Note: Embedded spaces, commas, characters, special symbols are not allowed between digits

  

They can be preceded by an optional + or ± sign.

Octal integer : It consists of set of digits, 0 to 7.

Ex: 037, 0, 0765, 05557 etc. (valid representation) It

is a sequence of digits preceded by 0.

Ex: Invalid representations

0394: digit 9 is not permitted (digits 0 to 7 only)

235: does not begin with 0. (Leading number must be 0).

Hexadecimal integer: It consists of set of digits, 0 to 9 and alphabets A, B, C, D, E, and

F. Hexadecimal integer is a sequence of digits preceded by 0x or 0X. We can also use a

through f instead of A to F.

Ex: 0X2, 0x9F, 0Xbcd, 0x0, 0x1. (Valid representations) Ex:

Invalid representations: 0af, 0xb3g, 0Xgh.

0af: does not begin with 0x or 0X.

0xb3g, 0Xgh: illegal characters like g, h. (only a to f are allowed)

The magnitude (maximum value) of an integer constant can range from zero to

some maximum value that varies from one computer to another.

Typical maximum values for most personal computers are: (16-bit machines)

Decimal integer constant: 32767 (215-1)

Octal integer constant: 077777

Hexadecimal integer constant: 0X7FFF

Note: The largest value that can be stored is machine dependent.

Floating point constants or Real constants : The numbers with fractional parts are called real

constants. These are the numbers with base-10 which contains either a decimal part or exponent (or

both). Representation: These numbers can be represented in either decimal notation or exponent

notation (scientific notation).

Decimal notation: 1234.56, 75.098, 0.0002, -0.00674 (valid notations)

Exponent or scientific notation:

General form: Mantissa e exponent

Mantissa: It is a real number expressed in decimal notation or an integer notation.

Exponent: It is an integer number with an optional plus (+) or minus (-) sign.

E or e: The letter separating the mantissa and decimal part. Ex:

(Valid notations)
3

1.23456E+3 (1.23456×10)
1

7.5098 e+1 (7.5098×10)
-4

 2E-4 (2×10)
These exponential notations are useful for representing numbers that are either very large or very small.

Ex: 0.00000000987 is equivalent to 9.87e-9

 Character constants:-
Single c haracter constants: It is character(or any symbol or digit) enclosed within single quotes.

Ex: „a ‟ „1‟ „*‟

Every Character constants have integer values known as ASCII values

ASCII:- ASCII stands for American Standard Code for Information Interchange. Pronounced ask-ee, ASCII is a code

for representing English characters as numbers, with each letter assigned a number from 0 to 255.Computers can only
understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or '@' or an action of

some sort.A SCII codes represent text in computers, communications equipment, and other devices that use text. Most
modern character-encoding schemes are based on ASCII, though they support many additional characters.
Below is the ASCII character table and this includes descriptions of the first 32 non -printing characters.

String constants or string literal:

String constant is a sequence of zero or more characters enclosed by double quotes.

Example:

 “MRCET” “12345” “*)(&%”

 Escape Sequences or Backslash Character Constants

C language supports some nonprintable characters, as well as backslash (\) which can be expressed

as escape sequences. An escape sequence always starts with backslash followed by one or more

 special characters.

 For example, a new line character is represented "\n" or endl

These are used in formatting output screen, i.e. escape sequence are used in
output functions. Some escape sequences are given below:

operator meaning

+ add

- subtract

 OPERATORS

AND

EXPRESSIONS

An operator is a symbol which represents a particular operation that can be performed on

 data. An operand is the object on which an operation is performed.
By combining the operators and operands we form an expression. An expression is a sequence

of operands and operators that reduces to a single value.

 C operators can be classified as

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment or Decrement operators

6. Conditional operator

7. Bit wise operators

8. unary operator

9. Special operators

10.Additional operators in c++

1. ARITHMETIC OPERATORS : All basic arithmetic operators are present in C.

 / division

 % modulo division(remainder)

An arithmetic operation involving only real operands(or integer operands) is called real arithmetic(or
integer arithmetic). If a combination of arithmetic and real is called mixed mode arithmetic.
/*C program on Integer Arithmetic Expressions*/

 #include<iostraem.h>

 void main()
 { int

a, b;

 cout<"Enter any two

integers"; cin>>a>>b;
cout<<"a+b"<< a+b;
cout<<"a-b"<< a-b;
cout<<"a*b"<< a*b;
cout<<"a/b"<< a/b;

* multiplication

 cout<<"a%b"<< a%b;
}

 OUTPUT:

a+b=23 a-b=17
a*b=60

a/b=6 a%

b=2

2. RELATIONAL OPERATORS : We often compare two quantities and depending on their
relation take certain decisions for that comparison we use relational operators.

operator meaning

 <

>

<=

>=

==

 !=

 is less than

is greater than

is less than or equal to

is greater than or equal to

is equal to is

not equal to

/* C program on relational operators*/
#include<iostream.h> void

main()
{ int

a,b;

clrscr();
cout<<"Enter a, b values:";

cin>>a>>b; cout<<"a>b"<<

a>b; cout<<"a>=b"<<

a>=b; cout<<"a<b"<< a<b;
cout<<"a<=b"<< a<=b;
cout<<"a==b"<< a==b;
cout<<"a!=b"<< a!=b; }
OUTPUT:
Enter a, b values: 5 9

a>b: 0 //false a<b: 1

//true a>=a: 1 //true

a<=b: 1 //true

a==b: 0 //false

a!= b: 1 //true

3 .LOGICAL OPERATORS:
Logical Data: A piece of data is called logical if it conveys the idea of true or false. In C++ we use int data type to

represent logical data. If the data value is zero, it is considered as false. If it is non -zero (1 or any integer other than 0) it

is considered as true. C++ has three logical operators for combining logical values and creating new logical values:

Note:Below

program works

in compiler

that support

C99 standards

#include<iostream.h> #include<stdbool.h>
int main()

{ bool

a,b;

/*logical and*/ a=0;b=0;

cout<<" a&&b "<< a&&b<<endl;

a=0;b=1;

cout<<" a&&b "<< a&&b<<endl;

a=1;b=0; cout<<" a&&b "<<

a&&b<<endl; a=1;b=1;

cout<<" a&&b "<< a&&b<<endl;

/*logical or*/ a=0;b=0;

cout<<" a||b "<< a||b<<endl;

a=0;b=1;

cout<<" a||b "<< a||b<<endl;

a=1;b=0;

cout<<" a||b "<< a||b<<endl;

a=1;b=1;

cout<<" a||b "<< a||b<<endl;

/*logical not*/ a=0;

cout<<" a||b "<< a||b<<endl; a=1;

cout<<" a||b "<< a||b<<endl;

return 0;
}

OUTPUT:

0 &&0=0
0&&1=0

1&&0=0

1 &&1=1

0 ||0=0

0||1=1

 1||0=1

 1||1=1

 !0 =1
!1 =0

 4.ASSIGNMENT OPERATOR:

The assignment expression evaluates the operand on the right side of the operator (=) and places

its value in the variable on the left.

Note: The left operand in an assignment expression must be a single variable. There

are two forms of assignment:

•Simple assignment

•Compound assignment

 Simple assignment :

In algebraic expressions we found these expressions.

 Ex: a=5; a=a+1; a=b+1;

Here, the left side operand must be a variable but not a constant. The left side variable

must be able to receive a value of the expression. If the left operand cannot receive a

value and we assign one to it, we get a compile error.

 Compound Assignment:

A compound assignment is a shorthand notation for a simple assignment. It requires that the

left operand be repeated as a part of the right expression. Syntax: variable operator+=value

Ex:

A+=1; it is equivalent to A=A+1;

 Advantages of using shorthand assignment operator:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

 5.INCREMENT (++) AND DECREMENT (--) OPERATORS:

The operator ++ adds one to its operand where as the operator - - subtracts one from its operand. These operators are
unary operators and take the following form:

Both the increment and decrement operators may either

precede or follow the operand.

 Postfix Increment/Decrement :(a++/a--)
In postfix increment (Decrement) the value is incremented
(decremented) by one. Thus the a++ has the same effect as

a=a+1; a --has the same effect as a=a-1.
The difference between a++ and a+1 is, if ++ is after the operand, the increment takes place after the

expression is evaluated.

The operand in a postfix expression must be a variable.
Ex1: int

a=5;
B=a++; Here the value of B is 5. the value of a is 6.
Ex2:
int x=4; y=x--; Here the value of y is 4, x value is 3

Prefix Increment/Decrement (++a/ --a)
In prefix increment (decrement) the effect takes place before the expression that contains

the operator is evaluated. It is the reverse of the postfix operation. ++a has the same effect

as a=a+1.
-- a has the same effect as a=a-1.

Ex: int b=4; A=

++b;
In this case the value of b would be 5 and A would be 5.
The effects of both postfix and prefix increment is the same: the variable is incremented by 1.
But they behave differently when they used in expressions as shown above. The execution of
these operators is fast when compared to the equivalent assignment statement.

#include<iostream.h>

 int main()

{ int

a=1;

int b=5; ++a;

cout<<"a="<<a<<endl;

--b;

cout<<"b="<<b<<endl;

cout<<"a="<<a++<<endl;

cout<<"a="<<a<<endl; cout<<"b="<<b--<<endl;

cout<<"b="<<b<<endl;

return 0; } a=2 b=4 a=2

a=3 b=4 b=3

6.CONDITIONAL OPERATOR OR TERNARY OPERATOR:

A ternary operator requires two operands to operate

Syntax:

#include<iostream.h> void main()

{ int a, b,c; cout<<"Enter a and b values:";

cin>>a>>b;

 c=a>b?a:b;

cout<<"largest of a and b is "<<c;

}

Enter a and b values:1 5

largest of a and b is 5

7. BIT WISE OPERATORS : C supports special operators known as bit wise operators for
manipulation of data at bit level. They are not applied to float or double.

operator meaning

&

Bitwise AND

 Bitwise AND operator (&)
The bitwise AND operator is a binary operator it requires two integral operands (character or integer). It does a
bitwise comparison as shown below:

 Shift Operators
The shift operators move bits to the right or the left. These are of two types:
. •Bitwise shift right operator
. •Bitwise shift left operator

Bitwise shift right operator
It is a binary operator it requires two integral operands. The first operand is the value to be shifted and the second

operand specifies the number of bits to be shifted. When bits are shifted to right,the bits at the right most end are

deleted and a zero is inserted at the MSB bit.

#include<iostream.h>

void main()

 ^

<<

>>

~

Bitwise exclusive OR

left shift

right shift

one's complement

{ int

x,shift;

cout<<”Enter a number:”); cin>>x;

 cout<<”enter now many times to right shift: “;

cin>>shift;

 cout<<”Before Right

Shift:”<<x; x=x>>shift; cout<<”After

right shift:”<<x; }

Run1:

Enter a number:8

enter now many times to right shift:1

Before Right Shift:8

After right shift:4

 8.SPECIAL OPERATORS

These operators which do not fit in any of the above classification are ,(comma), sizeof, Pointer

operators(& and *) and member selection operators (. and ->). The comma operator is used to link related

 expressions together.

Operators in c++: All above operators of c language are also valid in c++.New operators introduced

in c++ are

Sno Operator Symbol

1. Scope resolution operator ::

2. Pointer to a member declarator ::*

3. Pointer to member operator ->*,->

4. Pointer to member operator .*

5. new Memory allocating operator

6. delete Memory release operator

7. endl Line feed operator

8. setw Field width operator

9. insertion <<

10. Extraction >>

9 .UNARY OPERATOR : operator which operates
on single operand is called unary ope rator

1 .Scope Resolution operator:

Scope:-Visibility or availability of a variable in a program is called as scope. There are two types of scope.

i)Local scope ii)Global scope

Local scope: visibility of a variable is local to the function in which it is

declared. Global scope: visibility of a variable to all functions of a program

Scope resolution operator in “::” .

This is used to access global variables if same variables are declared as

local and global PROGRAM1.2:- #include<iostream.h> int a=5; void

main()

{ int a=10; cout<<”Local

a=”<<a<<endl;

cout<<”Global a=”<<::a<<endl;

}

Expected output:

Local a=10

Global a=5

Member Dereferencing operator: -

1. Pointer to a member declarator ::*

2. Pointer to member operator ->*,->

3. Pointer to member operator .*

 Pointer to a member declarator ::*

This operator is used for declaring a pointer to the member

of the class #include<iostream.h> class sample

{public: int x; };

 int main()

 { sample s; //object

 int sample ::*p;//pointer decleration

s.*p=10; //correct

cout<<s.*p;

}

Output:10

2 .Pointer to member operator ->*

#include<iostream.h>

class sample

{ public:

int x;

void display()

{

cout<<"x="<<x<<endl;

}

}; int

main()

 {

 sample s; //object

sample *ptr;

int

sample::*f=&sample::x;

s.x=10; ptr=&s; cout<<ptr-

>*f;

ptr->display();

 }

3. Pointer to member operator

 .* #include<iostream.h> class

sample

{ public: int x;

}; int

main()

{ sample s; //object

int sample ::*p;//pointer decleration s.*p=10;
 //correct

cout<<s.*p;

 }

Manipulators:

Manipulators are the operators used to format the data that is to be displayed on screen.The most commonly used

manipulators are endl and setw

endl:-it is used in output statement and inserts a line feed. It is similar to new line character (“\n”) ex:

………………..

cout<<”a=2”<<endl;

cout<”name=sunil”<<endl;

……………….

Output: a=2 name=sunil setw:- this manipulator allows a specified width for a field that

is to be printed on screen

and by default the value printed is right justified.This function is available in header file iomanip.h

include<iostream.h>

#include<iomanip.h>

using namespace std;

int main()

{

int s=123;

cout<<"s="<<setw(10)<<s ;

}

output

s= 123

Insertion (<<) and Extraction (>>)

operators: the operators are use with output and input

objects ex:

cout<<”Enter n”;

cin>>n

Control statements:-The flow of execution of statements in a program is called as control. Control statement

is a statement which controls flow of execution of the program. Control statements are classified

into following categories.

1.Sequential control statements

2.Conditional control statements

2.Conditional control statements

:Statements that are executed when a

condition is true. These statements are divided

into three categories. they are

 1.Decision making statements

2.Switch case control statement or

 3.Loop control statements or repetations

1.Decision making statements:- These statements are used to control the flow of execution of a program

by making a decision depending on a condition, hence they are named as decision making statements.

Decision making statements are of four types

1.Simple if

2.if else

3.nested if else

4.If else ladder

1.Simple if statement: if the test expression is true then if statement executes statements that
immediately follow if

3 .Unconditional control statements

1.Sequential control statements:-

statements ensures that the statements)

are executed in the same they appear in

the program. i.e. By executes the

statements in the program order.

(type) expression;

Or
type (expression);

Sequential control

instructions(or

order in which

default system in

sequential

 Syntax:

If(test expression)

{

List of statements;

}

/*largest of two numbers*/

#include<stdio.h> int main()
{ int a,b; cout<<“Enter any two integers:”; cin>>a>>b; if(a>b)

cout<<“A is larger than B\n A=”<<a;

if(b>a) cout<<“B is larger than A\n

A=”<<b; return 0;
}

2. if –else statement:

If test expression is true block of statements following if are executed and if test expression is

false then statements in else block are executed

if (test expression)

{ statement block1;

} else

{ statement block2;

}

/*largest of two numbers*/

#include<iostream.h> int main()

{ int a,b;
cout<<”Enter any two integers:”; cin>>a>>b;

if(a>b)
 cout<<“A is larger than B\n A=”<<a;

else

cout<<“B is larger than A\n A=”<<b;

return 0;

}

3.Nesting of if-else statements It's also possible to nest one if statement inside another. When a series of decisions are
to be made.

 If –else statement placed inside another if else statement

 Syntax:

If(test expression) {If(test

expression) {

 //statements

} else

{ //statements

}

} else

{If(test expression) {

//statements

 }

else

{ //statements

}

}

/*largest of three numbers*/

#include<iostream.h>

#include<conio.h> int

main()
 { int

a,b,c;
cout<<"Enter a,b,c values:";
cin>>a>>b>>c;

if(a>b)
{ if(a>c)

{ cout<<"A ia largest among three numbers\n";

cout"A= "<<a;
} else
{ cout<<"C ia largest among three numbers\n";

cout<<"c= "<<c;
}

}
 else

{if(b>c)
{ cout<<"B ia largest among three numbers\n";

cout<<"B="<<b;

 } else

{ cout<<"C ia largest among three numbers\n";

cout<<"c="<<c;
}

}

getch(); return

0;
}

4.if else ladder

 if(condition1)

statement1;

else if(condition2)

statement 2;

else if(condition3)

statement n;

else default statement.

statement-x;

The nesting of if-else depends upon the conditions with which we have to deal.

The condition is evaluated from top to bottom.if a condition is true the statement associated with it is executed.

When all the conditions become false then final else part containing default statements will be executed.

#include<iostream.h>

void main()

{ int

per;

cout<<”Enter percentage”; cin>>per; if(per>=80) cout<<”Secured

Distinction”<<endl; else if(per>=60)

cout<<”Secured First

Division”<<endl; else if(per>=50)

cout<<”Secured Second Division”<<endl; else

if(per>=40)
 cout<<”Secured Third

Division”<<endl; else cout<<”Fail”<<endl

}

THE SWITCH STATEMENT or

 MULTIWAY SELECTION :
In addition to two-way selection, most

programming languages provide another selection concept

known as multiway

selection. Multiway selection chooses among several alternatives. C has two different ways to implement

multiway selection: the switch statement and else-if construct

If for suppose we have more than one valid choices to choose from then we can use

switch statement in place of if statements. switch(expression)

{.

case value-1: block-1

break;

case value-2:

 block-2

break;

-------- default:

default block;

 }

/*program to simulate a simple calculator */

#include<iostream.h>

int main() { float a,b;

char opr;

cout<<"Enter number1 operator number2 : ";

 cin>>a>>oper>>b; switch(opr)

{

case '+':

cout<<"Sum : "<<(a + b)<<endl;

break;

case '-': cout<<"Difference : "<<(a -b)<<endl; break;

case '*': cout<<”Product : "<<a * b<<endl; break;

case '/': cout<<”Quotient :"<<(a / b)<<endl; break;

default: cout<<”Invalid Operation!"<<endl;

} return

0;

}

Loop control statements or repetitions:

A block or group of statements executed repeatedly until some condition is satisfied is called Loop.

The group of statements enclosed within curly brace is called block or compound statement.

We have two types of looping structures.

One in which condition is tested before entering the statement block called entry control.

The other in which condition is checked at exit called exit controlled loop.

Loop statements can be divided into three categories as given below

1.while loop statement

2.do while loop statement

3.for loop statement

1.WHILE STATEMENT :

 While(test condition)

{

 body of the loop

 }

It is an entry controlled loop. The condition is evaluated and if

it is true then body of loop is executed. After execution of body the

condition is once again evaluated and if is true body is executed once
again. This goes on until test condition becomes false.

c program to find sum of n natural numbers */

#include<iostream.h> int main() {

int i = 1,sum = 0,n; cout<<"Enter N"<<end; cin>>n;

while(i<=n)

{ sum = sum +

i; i = i + 1;

}

 cout<<”Sum of first”<<n<”natural numbers

 is:”<<sum<<endl; return 0;

}

2 .DO WHILE STATEMENT :

The while loop does not allow body to be

executed if test condition is false. The do while is an
exit controlled loop and its body is executed at least
once.

 do

{ body

}while(test condition);

/*c program to find sum of n natural numbers */

#include<stdio.h>

int main() {

int i = 1,sum = 0,n; cout<<”Enter

N"<<endl; cin>>n

 do{

sum = sum + i; i

= i + 1;

} while(i<=n);

cout<<”Sum of first”<< n<<” natural numbers

 is:”<<sum; return 0;

}

Note: if test condition is false. before the loop is being executed then While loop executes zero number of

times where as do--while executes one time

3 .FOR LOOP : It is also an entry control loop that provides a more concise structure

Syntax:

for(initialization; test expression; increment/decrement)
{ statements;

 }
For statement is divided into three expressions each is

separated by semi colon;
1 .initilization expression is used to initialize variables
2.test expression is responsible of continuing the loop. If

it is true, then the program control flow goes inside the

loop and executes the block of statements associated with

it .If test expression is false loop terminates

3.increment/decrement expression consists of increment
or decrement operator This process continues until test
condition satisfies.

/*c program to find sum of n natural numbers */

#include<stdio.h>

int main()

{

int i ,sum = 0,n; cout<<”Enter

N"; cin>>n;

 for(i=1;i<=n;i++)

{ sum = sum + i;

}

 cout<<“Sum of first”<<n<<” natural numbers

 is:%d”<<sum; return 0;

}

Nested loops:Writing one loop control statement within another loop control statement is called nested loop
statement

Ex:

for(i=1;i<=10;i++) for(j=1;j<=10;j++)

cout<<i<<j;

/*program to print prime numbers upto a given number*/

#include<stdio.h>

#include<conio.h> void

main()

{ int n,i,fact,j;

clrscr();

cout<<"enter the number:";

cin>>n for(i=1;i<=n;i++)

{fact=0;

//THIS LOOP WILL CHECK A NO TO BE PRIME NO. OR

NOT. for(j=1;j<=i;j++)

{ if(i%j==0)

fact++;

}

if(fact==2)

 cout<<i<<”\t”;

} getch(

);

}

Output:

Enter the number : 5

2 3 5

Unconditional control statements:

Statements that transfers control from on part of the program to another part unconditionally

Different unconditional statements are

1)goto

2)break

 3)continue

1.goto :- goto statement is used for unconditional branching or transfer of the program execution to the

labeled statement.

/*c program to find sum of n natural numbers */

#include<stdio.h>

int main() {

int i ,sum = 0,n;

cout<<”Enter N";

cin>>n; i=1; L1:

sum = sum + i;

i++; if(i<=n)

goto L1;

 cout<<“Sum of first “<<n<” natural numbers

 is”<<sum; return 0;

}

break:-when a break statement is encountered within a loop ,loop is immediately

exited and the program continues with the statements immediately following loop

/*c program to find sum of n natural numbers */

#include<stdio.h> int

main()

{

int i ,sum = 0,n;

cout<<”Enter N";

cin>>n; i=1; L1:

sum = sum + i;

i++; if(i>n)

break;

goto L1;

 cout<<”Sum of first”<<n<<”natural numbers is:

 ”<<sum; return 0;

}

Continue:It is used to continue the iteration of the loop statement by skipping the statements

after continue statement. It causes the control to go directly to the test condition and then to

continue the loop.

/*c program to find sum of n positive numbers read from keyboard*/

#include<stdio.h> int

main()

{

int i ,sum = 0,n,number;

cout<<Enter N"; cin>>n;

for(i=1;i<=n;i++)

{ cout<<“Enter a number:”;

cin>>number; if(number<0)

continue;

sum = sum + number;

}

cout<<“Sum of”<<n<<” numbers is:”<<sum; return

0;

}

 UNIT -2

 Functions, Classes and Objects:

Introduction of Classes,Class Definition, Defining a Members,Objects,Access Control,

Class Scope,Scope Resolution Operator,Inline functions,Memory Allocation for Objects,

Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function

Arguments,Friend Functions.

Introduction of Class:

An object oriented programming approach is a collection of objects and each object consists of

corresponding data structures and procedures. The program is reusable and more maintainable. The

important aspect in oop is a class which has similar syntax that of structure.

class: It is a collection of data and member functions that manipulate data. The data components of class are called

data members and f unctions that manipulate the data are called member functions.

It can also called as blue print or prototype that defines the variables and functions common to

all objects of certain kind. It is also known as user defined data type or ADT(abstract data type) A class

is declared by the keyword class.

Syntax: -

Access Control:

Access specifier or access modifiers are the labels that specify type of access given to members of a
class. These are used for data hiding. These are also called as visibility modes. There are three types of access

specifiers

1.private

2.public

3.protected

1.Private:

If the data members are declared as private access then they cannot be accessed from other functions
outside the class. It can only be accessed by the functions declared within the class. It is declared by the key

word „private‟ .

2.public:

If the data members are declared public access then they can be accessed from other functions out

side the class. It is declared by the key word „public‟ .

3.protected: The access level of protected declaration lies between public and private. This access specifier
is used at the time of inheritance Note:-

If no access specifier is specified then it is treated by default as private

The default access specifier of structure is public where as that of a class is “private”

Example:

 class

student

{

private : int roll; char

name[30];

public:

void get_data()

{ cout<<”Enter roll number and name”:

cin>>roll>>name;

}

void put_data()

 {

cout<<”Roll number:”<<roll<<endl;

 cout<<”Name :”<<name<<endl;

class class_name

{

Access specifier :

Variable declarations;

Access specifier :

function declarations;

} ;

}

};

Object:-Instance of a class is called object.

Syntax: class_name

object_name; Ex: student s;

Accessing members:-dot operator is used to access members of class

Object-name.function-name(actual arguments);

 Ex:

s.get_data();

 s.put_data();

Note:

1.If the access specifier is not specified in the class the default access specifier is private

2.All member functions are to be declared as public if not they are not accessible outside the class.

Object:

Instance of a class is called as object.

Syntax:

Class_name object name;

Example:

student s;

 in the above example s is the object. It is a real time entity that can be used

Write a program to read data of a student

#include<iostream> using

namespace std; class

student

{ private:

int roll;

char name[20];

public:

void getdata()

{cout<<”Enter Roll number:”;

 cin>>roll;

cout<<”Enter Name:”; cin>>name;

}

 void putdata()

 {cout<<”Roll no:”<<roll<<endl;

 cout<<Name:”<<name<<endl;

} }; int

main() {

student s;

 s.getdata();

s.putdata(); returm

0;

 }

Scope Resolution operator:

Scope: -Visibility or availability of a variable in a program is called as scope. There are two

types of scope. i)Local scope ii)Global scope

Local scope: visibility of a variable is local to the function in which it is declared.

Global scope: visibility of a variable to all functions of a program

Scope resolution operator in “::” .

This is used to access global variables if same variables are declared as local and global

 #include<iostream.h>

 int a=5;

 void main()

 {

 int a=1;

 cout<<”Local a=”<<a<<endl;

 cout<<”Global a=”<<::a<<endl;

 }

Class Scope:

Scope resolution operator(::) is used to define a function outside a class.

#include <iostream>

using namespace std;

class sample

{ public:

void output(); //function declaration

} ;

// function definition outside the class

void sample::output() {

cout << "Function defined outside the class.\n";

} ;

 int main() { sample

obj;

obj.output();

return 0;

}

Output of program:

Function defined outside the class.

Write a program to find area of rectangle

#include<iostream.h> class

rectangle

{ int

L,B;

public:

void get_data();

void area();

};

void rectangle::get_data()

{ cout<<”Enter Length of rectangle”;

cin>>L; cout<<”Enter breadth of

rectangle”; cin>>B;

}

int rectangle::area()

{ return L*B;

} int

main()

{ rectangle

r;

r.get_data();

cout<<”Area of rectangle is”<<r.area();

return 0;

}

INLINE FUNCTIONS:

Definition:

An inline function is a function that is expanded in line when it is invoked. Inline expansion

makes a program run faster because the overhead of a function call and return is eliminated. It

is defined by using key word “inline”

Necessity of Inline Function:

 One of the objectives of using functions in a program is to save some memory space, which becomes appreciable 

 when a function is likely to be called many times.


Every time a function is called, it takes a lot of extra time in executing a series of instructions for tasks such as

jumping to the function, saving registers, pushing arguments into the stack, and returning to the calling

functi

on.



When a function is small, a substantial percentage of execution time may be spent in such overheads.

 One solution to this problem is to use macro definitions, known as macros. Preprocessor macros are

popular in C. The major drawback with macros is that they are not really functions and



 therefore, the usual error checking does not occur during compilation. 



C++ has different solution to this problem. To eliminate the cost of calls to small functions, C++



 proposes a new feature called inline function. General

Form:

inline function-header

{ function body;

}

Eg:

#include<iostream.h> inline

float mul(float x, float y)

{

return (x*y);

}

inline double div(double p, double q)

{ return (p/q);

} int

main()

{

float a=12.345; float

b=9.82;

cout<<mul(a,b);

cout<<div(a,b); return

0;

}

Properties of inline function:

1.Inline function sends request but not a command to compiler

 2.Compiler my serve or ignore the request

3.if function has too many lines of code or if it has complicated logic then it is executed as

 normal function

Situations where inline does not work:




 
A function that is returning value , if it contains switch ,loop or both then it is treated as

normal

function. 
  

if a function is not returning any value and it contains a return statement then it is treated as normal function

 If function contains

static variables

then it is executed

as normal

function


 

If the inline function is declared as recursive function then it is executed as normal function.

Memory Allocation for Objects: Memory for objects is allocated when they are declared but not when

class is defined. All objects in a given class uses same member functions. The member functions are created
and placed in memory only once when they are defined in class definition

STATIC CLASS MEMBERS

 Static Data Members

 Static Member Functions

Static Data Members:

A data member of a class

can be qualified as static. A static

member variable has certain special

characteristics:

  

   It is initialized to zero when the first object of its class is created. No other initialization is permitted.Only one

copy of that member is created for the entire class and is shared by all the objects of that class, no matter how

m

any objects are created.

 It is visible only within the class, but its lifetime is the entire program.


 Static data member is defined by keyword „static
‟Syntax:

 Data type class name::static_variable Name; Ex:

int item::count;

#include<iostream.h>

#include<conio.h> class

item

{ static int count; int

number;

public:

void getdata(int a)

{ number=a;

count++;

}

void getcount()

{

cout<<"count is"<<count;

} };

int item::count;//decleration

int main() { item a,b,c;

a.getcount();

b.getcount();

c.getcount();

a.getdata(100);

b.getdata(200);

c.getdata(300); cout<<"After

reading data"; a.getcount();

b.getcount();

c.getcount();

return 0; } Output:

 count is 0

count is 0 count is

0 After reading

data count is 3

count is 3 count is

3

Static Member Functions

Like static member variable, we can also have static member functions. A member function that is

declared static has the following properties:

A static function can have access to only other static members (functions or variables) declared in

 the same class.

A static member function is to be called using the class name (instead of its objects) as follows:

class-name :: function-name;

#include<iostream.h>

class test

{ int code; static int

count;

public:

void setcode()

{ code=++count;

}

void showcode()

{

 cout<<”object number”<<code;

}

static void showcount()

{ cout<<”count”<<count;

} }; int

test::count; int

main()

{ test t1,t2;

t1.setcode();

t2.setcode();

test::showcount();

test t3; t3.setcode();

test::showcount();

t1.showcode();

t2.showcode();

t3.showcode(); return 0;

} Output: count 2 count

3 object number 1 object

number 2 object number

3

Arrays of Objects: Arrays of variables of type "class" is known as "Array of objects". An array of objects is

stored inside the memory in the same way as in an ordinary array.

Syntax:

class class_name

{

 private: data_type

members; public:

data_type members;

member functions;

};

Array of objects:

Class_name object_name[size];

Where size is the size of array Ex:

Myclass obj[10];

Write a program to initialize array of objects and print them

#include<iostream> using

namespace std; class

MyClass

{

int a;

public:

void set(int x)

{ a=x;

 } int

get()

{ return a;

}

}; int

main()

{

MyClass obj[5];

for(int i=0;i<5;i++)

obj[i].set(i); for(int

i=0;i<5;i++)

cout<<"obj["<<i<<"].get():"<<obj[i].get()<<endl;

} Output:

obj[0].get():0
obj[1].get():1 obj[2].get():2

obj[3].get():3 obj[4].get():4

Objects as Function Arguments: Objects can be used as arguments to
functions This can be done in three ways a. Pass-by-value or call by

value

b. Pass-by-address or call by address

c. Pass-by-reference or call by reference

a.Pass-by-value – A copy of object (actual object) is sent to function and assigned to the object of called

function (formal object). Both actual and formal copies of objects are stored at different memory locations.

Hence, changes made in formal object are not reflected to actual object. write a program to

 swap values of two objects

write a program to swap values of two objects

#include<iostream.h>

using namespace std;

class sample2; class

sample1

{ int a;

public:

void

getdat

a(int

x);

friend void display(sample1 x,sample2 y);

friend void swap(sample1 x,sample2 y);

};

void sample1::getdata(int x)

{

 a=x;

}

class sample2

{ int b;

public:

void getdata(int x);

friend void display(sample1 x,sample2 y);

friend void swap(sample1 x,sample2 y);

};

void sample2::getdata(int x)

{ b=x;

}

void display(sample1 x,sample2 y)

{ cout<<"Data in object 1 is"<<endl;

cout<<"a="<<x.a<<endl;

cout<<"Data in object 2 is"<<endl;

cout<<"b="<<y.b<<endl;

}

void swap(sample1 x,sample2 y)

{

int t; t=x.a;

x.a=y.b;

y.b=t; } int

main() { sample1 obj1;

sample2 obj2;

obj1.getdata(5);

obj2.getdata(15);

cout<<"Before Swap of data between Two objects\n

"; display(obj1,obj2); swap(obj1,obj2);

cout<<"after Swap of data between Two objects\n "; display(obj1,obj2);

}

Before Swap of data between Two objects

Data in object 1 is a=5 Data in object 2 is

b=15

after Swap of data between Two objects

Data in object 1 is a=5 Data in object 2

is b=15

b. Pass-by-address: Address of the object is sent as argument to function.

Here ampersand(&) is used as address operator and arrow (->) is used as de referencing operator.

If any change made to formal arguments then there is a change to actual arguments

write a program to swap values of two objects

#include<iostream.h>

using namespace std;
class sample2; class

sample1 { int a;

public:

void getdata(int x); friend void

display(sample1 x,sample2 y); friend void

swap(sample1 *x,sample2 *y);

};

void sample1::getdata(int x)

{ a=x; } class

sample2 { int

b; public:

void getdata(int x); friend void

display(sample1 x,sample2 y);

friend void swap(sample1 *x,sample2 *y);

};

void sample2::getdata(int x)

{ b=x; }

void display(sample1 x,sample2 y)

{ cout<<"Data in object 1 is"<<endl;

cout<<"a="<<x.a<<endl;

cout<<"Data in object 2 is"<<endl;

cout<<"b="<<y.b<<endl;

}

void swap(sample1 *x,sample2 *y)

{

int t;

t=x->a; x-

>a=y->b; y->b=t; } int

main() { sample1 obj1;

sample2 obj2;

obj1.getdata(5);

 obj2.getdata(15);

cout<<"Before Swap of data between Two objects\n ";

display(obj1,obj2); swap(&obj1,&obj2);

cout<<"after Swap of data between Two objects\n "; display(obj1,obj2);

}

Before Swap of data between Two objects

 Data in object 1 is a=5 Data in object 2

is b=15 after Swap of data between

Two objects

Data in object 1 is a=15

Data in object 2 is b=5

c.Pass -by-reference:A reference of object is sent as argument to function.

Reference to a variable provides alternate name for previously defined variable. If any change made to

reference variable then there is a change to original variable.

 A reference variable can be declared as follows

 Datatype & reference variable =variable;

Ex:

int x=5;

 int &y=x;

Write a program to find sum of n natural numbers using

reference variable

#include<iostream.h>

using namespace std;

int main() { int i=0;

int &j=i; int s=0;

int n; cout<<"Enter

n:"; cin>>n;

while(j<=n)

{ s=s+i;

i++;

}

cout<<"sum="<<s<<endl;

}

Output: Enter

n:10

sum=55

write a program to swap values of two objects

#include<iostream.h>

using namespace std;

class sample2; class

sample1

{ int a;

public:

void getdata(int x);

friend void display(sample1 x,sample2 y); friend

void swap(sample1 &x,sample2 &y);

};

void sample1::getdata(int x)

{ a=x;

}

class sample2

{ int b;

public:

void getdata(int x);

friend void display(sample1 x,sample2 y);

friend void swap(sample1 &x,sample2 &y);

};

void sample2::getdata(int x)

{ b=x;

}

void display(sample1 x,sample2 y)

{ cout<<"Data in object 1 is"<<endl;

cout<<"a="<<x.a<<endl;

cout<<"Data in object 2 is"<<endl;

cout<<"b="<<y.b<<endl;

}

void swap(sample1 &x,sample2 &y)

{

int t; t=x.a;

x.a=y.b;

y.b=t;

} int main()

{ sample1 obj1;

sample2 obj2;

obj1.getdata(5);

 obj2.getdata(15);

cout<<"Before Swap of data between Two objects\n ";

display(obj1,obj2); swap(obj1,obj2);

cout<<"after Swap of data between Two objects\n ";

display(obj1,obj2); }

Output:

Before Swap of data between Two objects

 Data in object 1 is a=5 Data

in object 2 is b=15

after Swap of data between Two objects Data

in object 1 is a=15

Data in object 2 is b=5

FRIEND FUNC TIONS:The private members cannot be accessed from outside the class. i.e.… a non

member function cannot have an access to the private data of a class. In C++ a non member function can

access private by making the function friendly to a class.

Definition:

A friend function is a function which is declared within a class and is defined outside the class. It
does not require any scope resolution operator for defining . It can access private members of a class. It is
declared by using keyword “friend” Ex:

class sample

{ int

x,y;

public:

sample(int a,int b);

friend int sum(sample s);

};

sample::sample(int a,int b)

{

x=a;y=b; }

int sum(samples s)

{ int sum;

sum=s.x+s.y; return

0;

}

void main()

{

Sample obj(2,3); int

res=sum(obj);

cout<< “sum=”<<res<<endl;

}

A friend function possesses certain special characteristics:
 It is not in the scope of the class to which it has been declared as friend.



 Since it is not in the scope of the class, it cannot be called using the object of that class. It can be invoked like a

normal


function without the help of any object.


 Unlike member functions, it cannot access the member names directly and has to use an object name and dot
members

hip operator with each member name.

 It can be declared either in the public or private part of a class without affecting its meaning.


 Usually, it has the objects as arguments.


#include<iostream.h> class

sample

{ int a;

int b;

public:

 void setvalue()

{ a=25;

b=40;

}

friend float mean(sample s);

};

float mean(sample s)

{ return float(s.a+s.b)/2.0;

} int

main()

{ sample

X;

X.setvalue(); cout<<”Mean

value=”<<mean(X);

return 0;

}

write a program to find max of two numbers using friend function for two different

classes #include<iostream>

using namespace std; class

sample2; class sample1

{ int x;

public:

sample1(int a);

friend void max(sample1 s1,sample2 s2)

};

sample1::sample1(int a)

{ x=a;

}

class sample2

{ int y;

public:

sample2(int b);

friend void max(sample1 s1,sample2 s2)

};

Sample2::sample2(int b)

{ y=b;

}

void max(sample1 s1,sample2 s2)

{

If(s1.x>s2.y)

cout<<”Data member in Object of class sample1 is larger ”<<endl;

else cout<<”Data member in Object of class sample2 is larger ”<<endl;

}

void main()

{

sample1 obj1(3);

sample2 obj2(5);

max(obj1,obj2); }

Write a program to add complex numbers using friend function

#include<iostream>

using namespace std;

class complex

{

float real,img; public:

complex(); complex(float

x,float y)

friend complex add_complex(complex c1,complex c2);

};

complex::complex()

{ real=img=0;

}

complex::complex(float x,float y)

{ real=x;img=y;

}

complex add_complex(complex c1,complex c2)

{ complex

t;

t.real=c1.real+c2.real;

t.img=c1.img+c2.img;

return t;

}

void complex::display ()

{ if(img<0)

{img=-img; cout<<real<<"-i"<<img<<endl

} else

{

cout<<real<<"+i"<<img<<endl

}

} int

main()

{

complex obj1(2,3); complex obj2(-4,-6);

complex obj3=add_compex(obj1,obj2);

obj3.display();

 return 0;

}

Friend Class:A class can also be declared to be the friend of some other class. When we create a friend class

then all the member functions of the friend class also become the friend of the other class. This requires the

condition that the friend becoming class must be first declared or defined (forward declaration).

#include <iostream.h> class

sample_1

{ friend class sample_2;//declaring friend class int

a,b;

public:

void getdata_1()

{ cout<<"Enter A & B values in class sample_1";

cin>>a>>b;

}

void display_1()

{

cout<<"A="<<a<<endl; cout<<"B="<<b<<endl;

 }

}; class

sample_2

{ int c,d,sum;

sample_1 obj1;

public: void

getdata_2()

{ obj1.getdata_1();

cout<<"Enter C & D values in class sample_2";

cin>>c>>d;

} void

sum_2()

{ sum=obj1.a+obj1.b+c+d;

}

 void display_2()

{ cout<<"A="<<obj1.a<<endl;

cout<<"B="<<obj1.b<<endl

; cout<<"C="<<c<<endl;

cout<<"D="<<d<<endl;

cout<<"SUM="<<sum<<endl;

} }; int main()

{ sample_1 s1;

s1.getdata_1();

s1.display_1();

sample_2 s2; s2.getdata_2();

s2.sum_2();

s2.display_2();

}

Enter A & B values in class sample_1:1 2

A=1

B=2

Enter A & B values in class sample_1:1 2 3 4

Enter C & D values in class sample_2:A=1

B=2

C=3

D=4

SUM=10

UNIT -3

 Constructors, Destructors, Inheritance:

Introduction to Constructors, Default Constructors,Parameterized Constructors, Copy Constructors
Multiple Constructors in a Class, Destructors.

Inheritance :Introduction to inheritance, Defining Derived Classes, Single Inheritance, Multiple

Inheritance, Multi-Level Inheritance, Hierarchical Inheritance, Hybrid Inheritance.

 Introduction to Constructors: C++ provides a special member function called the

constructor which enables an object to initialize itself when it is created.

 

 Definition:- A constructor is a special member function whose task is to initialize the objects of its class.
It is special because its name is the same name as the class name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor because it constructs the

values of data members of the class.

A constructor is declared and defined as follows:

integer obj1; => not only creates object obj1 but also initializes its data members m and n to zero.

There is no need to write any statement to invoke the construct or function.

CHARACTERISTICS OF CONSTRUCTOR
 They should be declared in the public section.

 They are invoked automatically when the objects are created.


 They do not have return type, not even void.


 They cannot be inherited, though a derived class can call the base class constructor.


 Like other c++ functions, they can have default arguments.


 Constructors cannot be virtual.


 We cannot refer to their addresses.

  

They make „implicit calls‟ to the operators new and delete when memory allocation is required.

Constructors are of 3 types:

1. Default Constructor

2. Parameterized Constructor

3. Copy Constructor

1.Default Constructor: A constructor that accepts no parameters is called the default constructor.

#include<iostream.h>

#include<conio.h> class

item

{ int m,n;

public:

item()

{

m=10; n=20;

class integer

{
int m,n;
public:
integer();

………..

………..
} ;
integer :: integer()
{

m=0;
n=0;

}

int main()

{ integer obj1;

………..

………..
}

}

void put();

};

void item::put()

{

 cout<<m<<n;

}

void main()

{ item t;

t.put();

getch(); }

2 .Parameterized Constructors:-The constructors that take parameters are

 called parameterized constructors. #include<iostream.h>

class item

{

int m,n;

public:

 item(int x, int y)

 {

 m=x;

 n=y;

 }

} ;

When a constructor has been parameterized, the object declaration statement such as

item t; may not work. We must pass the initial values as arguments to the constructor function

when an object is declared. This can be done in 2 ways: item t=item(10,20); //explicit call

item t(10,20); //implicit call

Eg:

#include<iostream.h>

#include<conio.h>

class item

{

int m,n;

public:

 item(int x,int y)

 {

 m=x; n=y;

 }

 void put();

} ;

void item::put()

{

 cout<<m<<n;

}

void main()

{

item t1(10,20);

item t2=item(20,30);

 t1.put();

 t2.put();

 getch();

}

3.Copy Constructor: A copy constructor is used to declare and initialize an object from

another object. Eg:

item t2(t1);

or item

t2=t1;

1. The process of initializing through a copy constructor is known as copy initialization.

2. t2=t1 will not invoke copy constructor. t1 and t2 are objects, assigns the values of t1 to t2.

3. A copy constructor takes a reference to an object of the same class as itself as

 an argument. #include<iostream.h>

class sample

 {

int n;

 public:

sample()

{ n=0; }

sample(int a)

{

n=a;

}

sample(sample &x)

 {

n=x.n;

}

void display()

{ cout<<n;

}

}; void

main()

{ sample

A(100); sample

B(A); sample

C=A;

sample D;

D=A;

A.display();

B.display();

C.display();

D.display();

}

Output: 100 100 100 100

Multiple Constructors in a Class: Multiple constructors can be declared in a class. There can be any
number of constructors in a class.

class comple x

{

float real,img;

public:

 complex()//default constructor

 {

 real=img=0;

 }

 complex(float r)//single parameter parameterized constructor

 {

 real=img=r;

 }

 complex(float r,float i) //two parameter parameterized constructor

 {

 real=r;img=i;

 }

 complex(complex&c)//copy constructor

 {

 real=c.real; img=c.img;

 }

 complex sum(complex c)

{

complex t;

 t.real=real+c.real;

 t.img=img+c.img;

 return t;

 }

 void show()

 {

 If(img>0)

 cout<<real<<"+i"<<img<<endl;

 else

 {

 img=-img;

 cout<<real<<"-i"<<img<<endl;

 }

 }

} ;

void main()

{

complex c1(1,2);

complex c2(2,2);

compex c3;

c3=c1.sum(c3);

c3.show();

}

DESTRUCTORS: A destructor, is used to destroy the objects that have been created by a constructor.

Like a constructor, the destructor is a member function whose name is the same as the class name

 but is preceded by a tilde. Eg: ~item() { }

1. A destructor never takes any argument nor does it return any value.

2. It will be invoked implicitly by the compiler upon exit from the program to clean up storage that is

 no longer accessible.

3. It is a good practice to declare destructors in a program since it releases memory space for future use.

#include<iostream>

using namespace std;

 class Marks

{

public:

 int maths;

int science;

 //constructor Marks() { cout <<

"Inside Constructor"<<endl;

 cout << "C++ Object created"<<endl;

}

 //Destructor

~Marks() { cout << "Inside

Destructor"<<endl; cout << "C++ Object

destructed"<<endl;

 }

};

int main()

{

Marks m1;

Marks m2;

return 0; }

Output:

 Inside Constructor

 C++ Object created

 Inside Constructor

 C++ Object created

 Inside Destructor

 C++ Object destructed

 Inside Destructor

C++ Object destructed

INHERITANCE: . The mechanism of deriving a new class from an old one is called inheritance or
derivation. The old class is referred to as the base class and the new one is called the derived class or sub class

. The derived class inherits some or all of the traits from the base class.

A class can also inherit properties from more than one class or from more than one level.Reusability

is an important feature of OOP

A derived class can be defined by specifying its relationship with the base class in addition to its

own details.

The colon indicates that the derived class name is derived from the base-class-name. the visibility mode is

optional and if present, may be either private or protected or public. The default is private. Visibility mode

specifies whether the features of the base class are privately derived or publicly derived.

class ABC : private XYZ //private derivation

{

class derived - class - name : visibility - mode base - class - name

{

………

………

}

members of ABC;

};

class ABC:public XYZ

{

members of ABC;

};

//public derivation

class ABC:protected XYZ {

// protected derivation members of ABC;

};

 class ABC:XYZ //private by default

 {

members of ABC;

 };

When a base class is privately inherited by a derived class, public members of the base class can
only be accessed by the member functions of the derived class.private membes of base class are inaccessible
to the objects of the derived class

When a base class is protected inherited by a derived class, public members of the base class can
only be accessed by the member functions of the derived class.private membes of base class are inaccessible
to the objects of the derived class. If private members of base class are to be inherited to

 derived class then declare them as protected

When the base class is publicly inherited, public members of the base class is publicly inherited,
public members of the base class become public members of the derived class and therefore they are

accessible to the objects of the derived class. In both the cases, the private members are not inherited and

 therefore, the private members of a base class will never become the members of its derived class

In inheritance, some of the base class data elements and member functions are „inherited‟ into the
derived class. We can add our own data and member functions and thus extend the functionality of the base
class. Inheritance, when used to modify and extend the capability of the existing classes, becomes a

 very powerful tool for incremental program development

 Types of

Inheritance:

1.Single Inheritance

2.Multi level Inheritance

 3.Mutiple Inheritance

4.Hybrid inheritance

5. Hierarchical Inheritance.

1.

SINGLE INHERITANCE: one derived class inherits from only one base class. It is the most

simplest form of Inheritance.

A / /Base class

B //Derived class

 #include<iostream>

using namespace std;

 class A

{

public:
int a,b;

void get()

{

cout<<"Enter any two Integer values"<<endl;

cin>>a>>b;

}

};

 class B:public A

{ int c;

public:

void

add() {

c=a+b;

cout<<a<<"+"<<b<<"="<<c;

}

};

 int main()

 {

B b;

b.get();

b.add();

}

 Output:

 Enter any two Integer values

 1 2

1+2=3

2.

MULTILEVEL INHERITANCE: In this type of inheritance the derived class inherits from a
class, which in turn inherits from some other class. The Super class for one, is sub

class for the other.

 #include<iostream.h>

class A

 {

public:

int a,b;

 void get()

{

cout<<"Enter any two Integer values"<<endl;

cin>>a>>b;

}

};

 class B:public A

 {

public:

int c; void

add()

{ c=a+b;

}

};

 class C:public B

{

public:

 void show()

{

cout<<a<<"+"<<b<<"="<<c;

A

B

C

3.

}

}; int

main()

{

C c;

c.get();

c.add();

c.show();

}

Output:

Enter any two Integer values

12 14

 12+14=26

Multiple Inheritance:In this type of inheritance a single derived class may inherit from two or more
than two base classes.

 Syntax:

class D : visibility A,

visibility B,…. {

………………

}

 #include<iostream.h>

class A

 {

public:

int a; void getA()

{

cout<<"Enter an Integer value"<<endl;

cin>>a;

}

}; class

B {

public:

int b; void

getB()

{

cout<<"Enter an Integer value"<<endl; cin>>b;

}

};

 class C:public A,public B

{

public:

int c; void add()

{ c=a+b;

A B

C

4.

cout<<a<<"+"<<b<<"="<<c<<endl;

}

}; int

main()

{ C obj;

obj.getA()

;

obj.getB()

;

obj.add();

 }

Enter an Integer

value 12 Enter an

Integer value 13

12+13=25

4.Hybrid Inheritance: Hybrid inheritance is combination of two or more inheritances such as
single,multiple,multilevel or Hierarchical inheritances.

#include<iostream.h>

class arithmetic

{ protected: int num1,

num2;

public:

void getdata()

{

 cout<<"For Addition:";

cout<<"\nEnter the first number: "; cin>>num1;

cout<<"\nEnter the second number: ";

cin>>num2;

}

};

class plus:public arithmetic

{ protected: int

sum;

public:

void add()

{

sum=num1+num2;

} };

class

minus

{

protected:

 int n1,n2,diff;

public:

void sub() {

cout<<"\nFor Subtraction:"; cout<<"\nEnter

the first number: "; cin>>n1;

cout<<"\nEnter the second number: ";

A

B C

D

 cin>>n2;

diff=n1-n2;

}

} ;

class result:public plus, public minus

{ public: void

display()

 {

cout<<"\nSum of "<<num1<<" and "<<num2<<"=

"<<sum; cout<<"\nDifference of "<<n1<<" and "<<n2<<"=

"<<diff; } }; int main() { result z;

z.getdata();

z.add();

z.sub();

z.display();

}

For Addition:

Enter the first number: 1

Enter the second number: 2

For Subtraction:

Enter the first number: 3

Enter the second number: 4

Sum of 1 and 2= 3

Difference of 3 and 4= -1

5.Hierarchical Inheritance:- Inheriting is a method of inheritance where one or more derived classes

is derived from common base class.

#include<iostream.h>

class A //Base Class

{ public:

int

a,b;

void getnumber()

{

A

B C D

 cout<<"\n\nEnter Number :\t"; cin>>a;

} };

class B : public A //Derived Class 1

{ public:

void square()

{

getnumber(); //Call Base class property

cout<<"\n\n\tSquare of the number :\t"<<(a*a); }

}; class C :public A //Derived

Class 2

{ public:

void cube()

{

getnumber(); //Call Base class property

cout<<"\n\n\tCube of the number :::\t"<<(a*a*a); }

}; int

main()

{

B b1; //b1 is object of Derived class 1

b1.square(); //call member function of class

B

C c1; //c1 is object of Derived class 2

c1.cube(); //call member function of class C

}

Enter Number : 2

Square of the number : 4

Enter Number : 3

 Cube of the number ::: 27

 UNIT -4

Pointers, Virtual Functions and Polymorphism:Introduction, Memory Management, new

Operator and delete Operator, Pointers to Objects, this Pointer, Pointers to

Derived Classes,Polymorphism,compile time polymorphism,Run time polymorphism, Virtual

Functions,Pure Virtual Functions,Virtual Base Classes,Virtual Destructors,Function

Overloading, Operator overloading, Rules for Operator overloading-binary and unary operators.

Introduction to Memory Management:

DYNAMIC MEMORY ALLOCATION & DEALLOCATION (new & delete)

C uses malloc() and calloc() functions to allocate memory dynamically at run time. It uses the

function free() to deallocated dynamically allocated memory.

 C++ supports these functions, it defines two unary operators new and delete that perform the task of allocating and
deallocat

ing the memory in a better and easier way.

 A object can be created by using new, and destroyed by using delete.




A data object created inside a block with new, will remain in existence until it is explicitly



 destroyed by using delete.

 new operator:-

new operator can be used to create objects of any type .Hence new operator

allocates sufficient memory to hold data of objects and it returns address of the allocated
memory. Syntax:

 pointer-variable = new data-type;

Ex: int *p = new int;

  

To create memory space for arrays:

 pointer-variable = new data-type[size];

Ex: int *p = new int[10];

 delete operator:

If the variable or object is no longer required or needed is destroyed by “delete” operator,

 there by some amount of memory is released for future purpose. Synatx:

 delete pointer-variable;

Eg: delete p;



If we want to free a dynamically allocated



array: delete [size] pointer-variable;

Program: write a program to find sum of list of integers

#include<iostream>

 using

namespace std;

 int main() {

int n,*p;

cout<<"Enter array

size:";

cin>>n; p=new

int[n];

cout<<"Enter list of integers"<<endl;
 for(int i=0;i<n;i++) cin>>p[i];

//logic for summation int

s=0;

for(int i=0;i<n;i++) s=s+p[i];

cout<<"Sum of array elements is\n"; cout<<s;

delete []p; return

0;

}

Enter array size:5

Enter list of integers

1 2 3 4 5

Sum of array elements is

15

Member Dereferencing operator: -

1. Pointer to a member declarator ::*

2. Pointer to member operator ->*

3. Pointer to member operator .*

Pointer to a member declarator ::*

This operator is used for declaring a pointer to the member

of the class #include<iostream.h> class sample

{public:

int x;

 };

int main()

 { sample s; //object

int sample ::*p;//pointer

decleration s.*p=10; //correct

cout<<s.*p;

}

Output:10

2.Pointer to member operator -

>* #include<iostream.h> class sample

{ public:

int x;

 void display()

{

cout<<"x="<<x<<endl;

}

};

 int main()

{

 sample s; //object

 sample *ptr;

 int sample::*f=&sample::x;

s.x=10; ptr=&s;

cout<<ptr->*f;

ptr->display();

 }

3. Pointer to member operator

 .* #include<iostream.h> class

sample

{ public: int x;

}; int

main()

 {

 sample s; //object

 int sample ::*p;//pointer decleration

s.*p=10; //correct

cout<<s.*p;

}

Pointers to Objects:Pointers to objects are useful for creating objects at run time. To access members



arrow operator () and de referencing operator or indirection (*) are used. Declaration of

pointer.

className*ptr

ex:

item *obj;

Here obj is a pointer to object of type item.

class item

{ int code; float

price;

public:

void getdata(int a,float b)

{ code=a;

price=b;

}

 void show()

{ cout<<”code:”<<code<<”\n”<<”Price:”<<price<<endl; }

};

Dec laration of object and pointer to class item:

item obj; item

*ptr=&obj; The

member can be

accessed as

follow.

a) Accessing members using dot operator
obj.getdata(101,77.7); obj.show();

 b)using pointer ptr->getdata(101,77.7);

ptr->show();

c)Using de referencing operator and dot operator

(*ptr).getdata(101,77.7);

(*ptr).show();

Creating array of objects using pointer:

item *ptr=new item[10];

Above declaration creates memory space for an array of 10 objects of type item.

#include<iostream.h>

 class item

{ int code; float

price;

public: void getdata(int a,float

b)

{ code=a;

price=b;

} void

show()

{ cout<<code<<"\t"<<price<<endl;

} }; int main() { int n; int cd; float pri;

cout<<"Enter number of objects to be created:";

cin>>n; item *ptr=new item[n]; item *p; p=ptr;

for(int i=0;i<n;i++)

{ cout<<"Enter data for object"<<i+1;

cout<<"\nEnter Code:";cin>>cd;

cout<<"Enter price:";cin>>pri; p-

>getdata(cd,pri); p++;

}

 p=ptr;

cout<<"Data in various objects are "<<endl; cout<<"Sno\tCode\tPrice\n";

 for(i=0;i<n;i++)

{ cout<<i+1<<"\t"; ptr-

>show(); ptr++;

}

return 0;

}

Pointers to Derived Classes: Pointers can be declared to derived class. it can be used to access members

of base class and derived class. A base class pointer can also be used to point to object of derived class but it

can access only members that are inherited from base class.

#include<iostream.h>

class base

{

public:

int a;

 void get_a(int x)

{ a=x;

}

void display_a()

{ cout<<"In base"<<"\n"<<"a="<<a<<endl; } };

class derived:public base

{ int

b;

public:

void get_ab(int x,int y)

{ a=x; b=y;

}

void display_ab()

{

 cout<<"In Derived "<<"\n"<<"a="<<a<<"\nb="<<b<<endl;

} }; int main() { base b; base *bptr;

bptr=&b;//points to the object of base class bptr-

>get_a(100); bptr->display_a();

deri ved d; derived *dptr; dptr=&d;//points to the

object of derived class

 dptr->get_a(400);

dptr->display_a(); dptr->get_ab(300,200);

dptr->display_ab();

 bptr=&d;//points to the object of derived

class bptr->get_a(400); bptr->display_a();

return 0;

}

Output: In

base

a=100

 In base

a=400

In Derived

 a=300

b=200

In base

a=400

RUNTIME POLYMORPHISM USING VIRTUAL FUNCTIONS

Static & Dynamic Binding

Polymorphism means „one name ‟ -„multiple forms.

The overloaded member functions are „selected‟ for invoking by matching arguments, both type and

number. This information is known to the compiler at the compile time and compiler is able to select the
appropriate function for a particular call at the compile time itself. This is called Early Binding or Static

Binding or Static Linking. Also known as compile time polymorphism. Early binding means that an

object is bound to its function call at the compile time .

It would be nice if the appropriate member function could be selected while the program is running.

This is known as runtime polymorphism. C++ supports a mechanism known as virtual function to

achieve run time polymorphism.

At the runtime, when it is known what class objects are under consideration, the appropriate version

of the function is invoked. Since the function is linked with a particular class much later after the
compilation, this process is termed as late binding. It is also known as dynamic binding because the
selection of the appropriate function is done dynamically at run time.

Function Operator Virtual

Overloading

Overloading

Functions

VIRTUAL FUNCTIONS

Polymorphism refers to the property by which objects belonging to different classes are able to

respond to the same message, but different forms. An essential requirement of polymorphism is therefore
the ability to refer to objects without any regard to their classes.

When we use the same function name in both the base and derived classes, the function in the bas

class is declared as virtual using the keyword virtual preceding its normal declaration.

When a function is made virtual, C++ determines which function to use at runtime based on the type of
object pointed to by the base pointer, rather than the type of the pointer. Thus, by making the base pointer
to point to different objects, we can execute different versions of the virtual function.

#include<iostream.h>

 class Base

{ public:

void display()

{

cout<<”Display Base”;

}

virtual void show()

{

cout<<”Show Base”;

} };

class Derived : public Base

{ public: void

display()

{ cout<<”Display

Derived”;

}

void show()

Polymorphism

Run time
Compile time

Polymorphism
Polymorphism

{ cout<<”show

derived”; }

};

void main()

{

Base b;

Derived d; Base

*ptr;

cout<<”ptr points to Base”; ptr=&b;

ptr->display(); //calls Base

ptr->show(); //calls Base

cout<<”ptr points to derived”;

ptr=&d;

ptr ->display(); //calls Base ptr-

>show(); //class Derived

}

Output:

ptr point s to Base

Display Base

Show Base

ptr points to Derived

Display Base

Show Derived

When ptr is made to point to the object d, the statement ptr->display(); calls only the function

associated with the Base i.e.. Base::display()

where as the statement

ptr->show();

calls the derived version of show(). This is because the function display() has not been made virtual

in the Base class.

Rules For Virtual Functions:

When virtual functions are created for implementing late binding, observe some basic rules that

satisfy the compiler requirements.

1. The virtual functions must be members of some class.

2. They cannot be static members.

3. They are accessed by using object pointers.

4. A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even though it may not be used.

6. The prototypes of the base class version of a virtual function and all the derived class

versions must be identical. C++ considers them as overloaded functions, and the virtual

function

 mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer points to any type of the derived object, the reverse is not true. i.e. we

cannot use a pointer to a derived class to access an object of the base class type.

9. When a base pointer points to a derived class, incrementing or decrementing it will not make

it to point to the next object of the derived class. It is incremented or decremented only

relative to its

 base type. Therefore we should not use this method to move the pointer to the next object.

10. If a virtual function is defined in the base class, it need not be necessarily redefined in the

derived class. In such cases, calls will invoke the base function.

OVERLOADING

OPERATOR OVERLOADING

C++ has the ability to provide the operators with as special meaning for a data type. The mechanism of

giving such special meanings to an operator is known as operator overloading. We can overload all the

operators except the following:

 Class member access operator (“.” And ”

 .*”) Scope resolution operator “::”

 Size operator (sizeof)
 Conditional operator

To define an additional task to an operator, specify what it means in relation to the class to which

the operator is applied. This is done with the help of a special function, called operator function.

The process of overloading involves following steps:

1. Create a class that defines the data type that is to be used in the overloading operation.

2. Declare the operator function operator op() in the public part of the class. It may be a

member function or a friend function.

3. Here op is the operator to be overloaded.

4. Define the operator function to implement the required operations.

Ex:

 complex complex::operator+(complex c)

{

complex t;

t.real=real+c.real;

t.img=img+c.img;

return t;

}

Concept of Operator Overloading

One of the unique features of C++ is Operator Overloading. Applying overloading to operators means, same

operator in responding different manner. For example operator + can be used as concatenate operator as
well as additional operator.

That is 2+3 means 5 (addition), where as

"2"+"3" means 23 (concatenation).

Performing many actions with a single operator is operator overloading. We can assign a user

defined function to an operator. We can change function of an operator, but it is not recommedned to

change the actual functions of operator. We can't create new operators using this operatorloading.

Operator ov erloading concept can be applied in following two major areas (Benefits)

1. Extension of usage of operators

2. Data conversions

Rules to be followed for operator overloading:-

1.Only existing operators can be overloaded.

2.Overloaded operators must have at least one operand that is of user defined operators

3.We cannot change basic meaning of an operator.

 4.Overloaded operator must follow minimum characteristics that of original operator

5.When using binary operator overloading through member function, the left hand operand must be

an object of relevant class

The number of arguments in the overloaded operator‟ s arguments list depends

1. Operator function must be either member function or friend function.

General Form: -

return - type classname :: operator op(arglist)

{
Function body

}

2. If operator function is a friend function then it will have one argument for unary

operator

 & two arguments for binary operator

3. If operator function is a member function then it will have Zero argument for unary

operator & one arguments for binary operator

 Unary Operator Overloading

An unary operator means, an operator which works on single operand. For example, ++ is an unary operator,

it takess single operand (c++). So, when overloading an unary operator, it takes no argument (because object
itself is considered as argument).

Syntax for Unary Operator (Inside a class)

 return-type operator operatorsymbol()

{

//body of the function

}

 Ex:

 void operator-()

{ real=-real;

img=-img;

 }

Syntax for Unary Operator (Outside a class) return-

type classname::operator operatorsymbol()

{

//body of the function

}

 Example 1:-

 void operator++()

{

counter++;

}

Example 2:-

 void complex::operator-()

 {

real=-real; img=-img;

 }

The following simple program explains the concept of unary overloading.

#include < iostream.h >

 #include < conio.h >

// Program Operator

 Overloading class fact

{ int a;

 public:

fact ()

 {

a=0

;

}

 fact (int i)

{ a=i;

} fact operator!()

{ int

f=1,i;

fact t;

for (i=1;i<=a;i++)

{ f=f*i;

}

t.a=f; return

t;

}

void display()

{

cout<<”The factorial ”<< a;

}

}; void

main()

{ int

x;

cout<<”enter a number”;

cin>>x; fact

s(x),p;

p=!s;

p.display();

}

Output for the above program:

Enter a number 5

The factorial of a given number 120

Explanation:

We have taken „!‟ as operator to overload. Here class name is fact. Constructor without parameters to take

initially value of „x‟ as 0. Constructor with parameter to take the value of „x‟ . We have create two objects

one for doing the factorial and the other for return the factorial. Here number of parameter for an overloaded
function is 0. Factorial is unary operator because it operates on one dataitem. operator overloading find the
factorial of the object. The display function for printing the result.

Overloading Unary Operator -

Example 1: -

Write a program to overload unary operator –

#include<iostream>

using namespace

std; class complex {

float real,img;

public:

complex();

 complex(float x, float y);

void display();

void operator-();

};

complex::complex(

) { real=0;img=0; }

complex::complex(float x, float y)

{ real=x; img=y; } void

complex::display() {

int imag=img;

if(img<0)

{ imag=-img; cout<<real<<" -

i"<<imag<<endl;

} else cout<<real<<"

+i"<<img<<endl;

} void

complex::operator-() {

real=-real; img=-img; }

int main() { complex

c(1,-2); c.display();

cout<<"After Unary - operation\n";

-c;

c.display();

}

Example 2: -

#include<iostream.h> using

namespace std; class space {

int x,y,z; public: void

getdata(int a,int b,int c);

void display();

void operator -();

};

void space :: getdata(int a,int b,int c)

{

x=a;

y=b;

z=c;

}

void space :: display()

{

cout<<"x="<<x<<endl;

cout<<"y="<<y<<endl;

cout<<"z="<<z<<endl;

}

void space :: operator-()

{ x=-x;

y=-y; z=-

z; } int

main() {

space s;

s.getdata(1 0,-20,30);

s.display();

-s;

cout<<"after negation\n";

s.display();

}

Output:

 x=10

y=-20 z=30

after

negation x=-

10 y=20

z= -30

 It is possible to overload a unary minus operator using a friend function as follows:

 friend void operator-(space &s);

Example 3: -

Unary minus operator using a friend function

#include<iostream.h

>

#include<iostream.h

> using namespace

std; class space { int

x,y,z; public:

 void getdata(int a,int b,int c);

void display(); friend void

operator-(space &);

 };

void space :: getdata(int a,int b,int c)

{

x=a;

y=b;

z=c;

}

 void space :: display()

{

cout<<x<<" "<<y<<" "<<z<<endl;

}

void operator-(space &s)

{

s.x=-s.x;

s.y=-s.y;

s.z=-s.z;

}

 int main()

 {

space S;

S.getdata(10,-20,30);

S.display(); -

S;

cout<<"after negation\n";

S.display();

}

 Output:

10 -20 30

after negation

-10 20-30

 Binary Operator Overloading

An binary operator means, an operator which works on two operands. For example, + is an binary operator,
it takes single operand (c+d). So, when overloading an binary operator, it takes one argument (one is
object itself and other one is passed argument).

 Example complex

operator+(complex s)

{ complex

t;

t.real=real+s.real;

t.img=img+s.img;

return t;

}

The following program explains binary operator overloading:

#include < iostream.h

> #include < conio.h >

class sum { int a;

Syntax for Binary Operator definition (Outside a class)

return - type classname::operator operatorsymbol(argument)
{
//body of the function
}

Syntax for Binary Operator (Inside a class)

return - type operator operatorsymbol(argument)

{
//body of the function
}

public:

 sum()

{ a=0; }

sum(int i)

{ a=i; }

sum operator+(sum p1)

{ sum

t;

t.a=a+p1.a;

return t;

}

void main ()

{ cout<<”Enter Two Numbers:” int

a,b;

cin>>a>>b;

sum x(a),y(b),z;

 z.display(); z=x+y; cout<<”after

applying operator \n”; z.display(); getch(); }

Output for the above program:

Enter two numbers 5 6

After applying operator

The sum of two numbers 11

Explanation: The class name is „sum‟ . We have create three objects two for to do the sum and the other for

returning the sum. ‟ +‟ is a binary operator operates on members of two objects and returns the result which

is member of a object.here number of parameters are 1. The sum is displayed in display function.

Write a program to over load arithmetic operators on complex numbers using member function

#include<iostream.h>

class complex

{ float real,img;

public:

complex(){ }

complex(float x, float y)

{ real=x;

img=y

;

}

complex operator+(complex c) void

display();

};

complex complex::operator+(complex c)

{ complex temp;

 temp.real=real+c.real

; temp.img=img+c.img;

return temp;

}

void complex::display()

{ int

imag=img;

If(img<0)

{ imag=-imag;

cout<<real<<”-i”<<imag;

} else cout<<real<<”+i”<<img;

} int

main()

{

complex c1,c2,c3;

c1=complex(2.5,3.5);

c2=complex(1.6,2.7); c3=c1+c2;

c3.display(); return

0;

}

Overloading Binary Operators Using Friends

1. Replace the member function declaration by the friend function declaration in

 the class friend complex operator+(complex, complex) 2. Redefine the

operator function as follows:

 complex operator+(complex a, complex b)

{ return complex((a.x+b.x),(a.y+b.y));

 }

Write a program to over load arithmetic operators on complex numbers using

friend function #include<iostream.h> class complex

{ float real,img;

public:

complex(){ }

complex(float x, float y)

{ real=x;

img=y

;

}

friend complex operator+(complex); void

display();

};

complex operator+(complex c1, complex c2)

{ complex temp;

temp.real=c1.real+c2.real;

 temp.img=c1.img+c2.img

;

return temp;

}

void complex::display()

{

If(img<0)

{ img=-img;

cout<<real<<”-i”<<img;

} else cout<<real<<”+i”<<img;

} int

main() {

complex c1,c2,c3;

c1=complex(2.5,3.5);

c2=complex(1.6,2.7);

c3=c1+c2;

c3.display();

 return 0;

}

 UNIT -5

 Templates and Exception handling:

Introduction, Class Templates, Class Templates with Multiple Parameters, Function

 Templates, Function Templates with Multiple Parameters, Member Function Templates.

Exception Handling :Basics of Exception Handling, Types of exceptions, Exception Handing

Mechanism, Throwing and Catching Mechanism, Rethrowing an Exception, Specifying

Exceptions.

GENERIC PROGRAMMING(Templates)

Generic programming is an approach where generic types are used as parameters in algorithms so that

they work for a variety of suitable data types and data structures.

A significant benefit of object oriented programming is reusability of code which eliminates
redundant coding. An important feature of C++ called templates strengthens this benefit of OOP and
provides great flexibility to the language. Templates support generic programming, which allows to

develop reusable software components such as functions, classes etc.. supporting different data types in a
single framework.

Templates Concept

Introduction

Instead of writing different functions for the different data types, we can define common

function. For example

int max(int a,int b); // Returns maximum of two integers float

max(float a,float b); // Return maximum of two floats char max(char

a,char b); // Returns maximum of two characters

(this is called as function overloading)

But, instead of writing three different functions as above, C++ provided the facility called "Templates".

With the help of templates you can define only one common function as follows:

T max(T a,T b); // T is called generic data type

Template functions are the way of making function/class abstracts by creating the behavior of function
without knowing what data will be handled by a function. In a sense this is what is known as “generic

functions or programming”.

Template function is more focused on the algorithmic thought rather than a specific means of single data

type. For example you could make a templated stack push function. This push function can handle the

insertion operation to a stack on any data type rather then having to create a stack push function for each

different type.

Syntax:

template < class type > ret_type

fun_name(parameter list)

{

--------------//body of function

} //www.suhritsolutions.com

Features of templates:-

1. It eliminates redundant code

2. It enhances the reusability of the code.

3. It provides great flexibility to language

Templates are classified into two types. They are

1 .Function templates

2.Class Templates.

F unction Templates

The templates declared for functions are called as function templates. A function template defines how an
individual function can be constructed. Syntax :

template < class type,………>

ret _type fun_ name(arguments)

{

-----------------// body of the function

}

CLASS TEMPLATES

The templates declared for classes are called class templates. A class template specifies how
individual classes can be constructed similar to the normal class specification. These classes model a
generic class which support similar operations for different data types. General Form of a Class Template

template <class T>

 class class-

name {

…….

…….

};

A class created from a class template is called a template class. The syntax for defining an object of

a template class is:

classname<type> objectname(arglist);

#include<iostream.h>

#include<conio.h>

template <class T> class

swap

{ T
a,b;
public:

swap(T x,T y)

{ a=x;

b=y;

}

void swapab()

{

T temp;

temp=a;

 a=b;

b=temp;

}

void showdata()

{ cout<<a<<b;

}

};

void main()

{

int m,n;

float m1,n1;

cout<<”Enter integer values”; cin>>m>>n;

cout<<”Enter floating

values”; cin>>m1>>n1;

swap<int> c1(m,n);

swap<float> c2(m1,n1);

c1.swapab(); c1.showdata();

c2.swapab(); c2.showdata();

}

Class Template with Multiple Parameters

Syntax:

template <class T1, class T2,….>

 class class-name {

…….

…….

}

#include<iostream.h>

 template <class

T1,class T2> class Test {

T1 a; T2

b;

public:

Test(T1 x,T2 y)

{ a=x; b=y;

} void

show() {

cout<<a<<b;

}

} ;

void main()

{

Test<float,int>

test1(1.23,123); Test<int,char>

test2(100,‟w‟); test1.show();

test2.show();

}

FUNCTION TEMPLATES

Like class template we can also define function templates that would be used to create a family of

functions with different argument types.

General Form:

template <class T>

return-type function-name (arguments of type T) {

………

………

}

#include<iostream.h>

template<class T>

void swap(T &x, T &y)

{

T temp = x;

x=y;

y=temp; }

void fun(int m,int n,float a,float b)

{

cout<<m<<n;

swap(m,n);

cout<<m<<n;

cout<<a<<b; swap(a,b);

cout<<a<<b;

} int

main() {

fun(100,200,11.22,33.44); return

0;

}

Example 2:-

#include < iostream.h >

#include < conio.h >

template T max(T a, T

b)

{

 if(a>b)

return a;

else

 return b;

} void

main()

{ char ch1,ch2,ch3;

cout<<”enter two characters”<< ch2<<

ch3; cin>>ch2>>ch3; d=max(ch2,ch3);

cout<<”max(ch2,ch3)”<< ch1;

int a,b,c; cout<<”enter two

integers:”; cin>>a>>b;

c=max(a,b);

cout<<”max(a,b):”<< c<< endl;

float f1,f2,f3;

cout<<”enter two floats< f1f2

>:”; cin>>f1,f2; f3=max(f1,f2);

cout<<”max(f1,f2):”<< f3;

}

output:

enter two characters: A,B

max(ch2,ch3):B enter two

integers:20,10 max (a,b)

:20 enter two floats

:20.5,30.9 max (f1,f2)

:30.9

Function Template with Multiple Parameters

Like template class, we can use more than one generic data type in the template statement, using

a comma -separated list as shown below: template <class T1, class T2,.> return-type

function- name(arguments of types T1,T2.) {

……..

……..

}

#include<iostream.h>

#inlcude<string.h>

template<clas T1, class T2>

void display(T1 x,T2 y)

{

cout<<x<<y;

} int

main()

{

display(1999,”EBG”);

display(12.34,1234); return

0;

}

Exception handling

Exceptions: Exceptions are runtime anomalies or unusual conditions that a program may encounter while
executing .Anomalies might include conditions such ass division by zero, accessing an array outside of its
bounds or running out of memory or disk space. When a program encounters an exception condition, it

must be identified and handled.

Exceptions provide a way to transfer control from one part of a program to another. C++

exception handling is built upon three keywords: try, catch, and throw.

Types of exceptions:There are two kinds of exceptions

1.Synchronous exceptions

2.Asynchronous exceptions

1.Synchronous exceptions:Errors such as “Out-of-range index” and “over flow” are synchronous

exceptions

2.Asynchronous exceptions: The errors that are generated by any event beyond the control of the program

are called asynchronous exceptions

The purpose of exception handling is to provide a means to detect and report an exceptional circumstance

Exception Handling Mechanism:

An exception is said to be thrown at the place where some error or abnormal condition is detected. The

throwing will cause the normal program flow to be aborted, in a raised exception. An exception is thrown
programmatic, the programmer specifies the conditions of a throw.

In handled exceptions, execution of the program will resume at a designated block of code, called

a catch block, which encloses the point of throwing in terms of program execution. The catch block can
be, and usually is, located in a different function than the point of throwing.

 C++ exception handling is built upon three keywords: try, catch, and throw.

Try is used to preface a block of statements which may generate exceptions. This block of statements is known as

try block. When an exception is detected it is thrown by using throw statement in the try block. Catch block

catches the exception thrown by t hrow statement in the try block and handles it appropriately.

#include<iostream>

 using

namespace std; int

main() {

int a,b;

cout<<"Enter any two integer values";

cin>>a>>b;
int x=a-b; try

{ if(x!=0)

 { cout<<"Result(a/x)="<<a/x<<endl;

} else {

throw x;

}

} catch(int ex)

{

cout<<"Exception caught:Divide By Zero \n"; }

}

THROWING MECHANISM

When an exception is detected, it can be thown by using throw statement in any one of the following forms
 throw(exception);



 throw exception;


 throw; CATCHING MECHANISM:

Catch block is as below

Catch(data type arg)

{

//statements for handling

//exceptions

}

Multiple catch statements: try

{

//try block }

catch(data type1 arg)

{

//catch block1

}

catch(data type2 arg)

{

//catch block2 }

………………

……………..

catch(data typeN arg)

{

//catch blockN

}

• When an exception is thrown, the exception handler are searched in order fore an appropriate
match.

• It is possible that arguments of several catch statements match the type of an exception. In

such cases the first handler that matches the exception type is executed

Write a Program to catch multiple catch statements

#include<iostream.h>

void test(int x)

{

 try

{ if(x==1) throw x; else

if(x==0) throw 'x'; else

if(x==-1) throw 1.0;

cout<<"end of try block"<<endl;

}

catch(char c)

{

cout<<"caught a character"<<endl;

}

catch(int m)

{

 cout<<"caught an integer"<<endl;

}

catch(double d)

 {

cout<<"caught a double"<<endl;

}

} int

main() {

test(1);

test(0);

test(-1);

test(2);

return 0;

}

Output:

caught an integer

caught a character

caught a double

end of try block

Catch All Exceptions:

all possible types of exceptions and therefore may not be able to design independent catch handlers to

catch them. In such circumstances, we can force a catch statement to catch all exceptions instead of a
certain type alone.

catch(…)

 {

………

}

Write a Program to catch all exceptions

#include<iostream.h>

void test(int x)

{

try

{

if(x==0) throw x;

if(x==0) throw 'x'; if(x==-

1) throw 1.0;

} catch(...)

{

cout<<"caught exception"<<endl;

} } int

main() {

test(-1);

test(0);

test(1);

return 0;

}

Re-throwing an Exception:

It is possible to pass exception caught by a catch block again to another exception handler. This

I known as Re-throwing.

#include <iostream>

using namespace std;

void MyHandler()

{ try

{ throw "hello";

}

catch (const char*)

{

cout <<"Caught exception inside MyHandler\n";

throw; //rethrow char* out of function }

} int

main()

{ cout<< "Main start...."<<endl;

try

{

MyHandler();

}

catch(const char*)

{ cout <<"Caught exception inside Main\n";

} cout << "Main end";

return 0;

}

Specifying Exceptions:

Specification of exception restrict functions to throw some specified exceptions only with the use of

throw(exception list) in the the header of the function.

General form

Type function_name(argument list) throw(exceptions -list)

{

Statements try

{ statements

}

}

#include <iostream>

using namespace std; void

test(int x)

throw(int,float,char)

{ switch(x) { case

1:throw x; break;

case 2:throw 'x'; break;

case 3:throw double(x); break;

case 4:throw float(x); break;

}

} int

main()

{ try

{ test(4);//test(4) leads to abnormal termination

 }

catch(int i)

{ cout <<"Caught int type exception\n";

} catch(float

f)

{ cout <<"Caught float type exception\n";

} catch(char

c)

{ cout <<"Caught char type exception\n";

} catch(double

i)

{ cout <<"Caught Double type exception\n";

}

 return 0;

}

